Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 4, Pages 773–776
DOI: https://doi.org/10.4213/tvp508
(Mi tvp508)
 

This article is cited in 3 scientific papers (total in 3 papers)

Short Communications

On characteristic functions of probability distributions of sums with random permutations of signs

A. A. Ryabinin

N. I. Lobachevski State University of Nizhni Novgorod, Faculty of Mechanics and Mathematics
Full-text PDF (246 kB) Citations (3)
Abstract: In the paper, the random series
$$ S=\sum_{k=1}^\infty \pm a_k ,\qquad a_k > 0,\qquad \sum_{k=1}^\infty a_k < \infty $$
$S=\sum_{k=1}^\infty \pm a_k$, $a_k > 0$, $\sum_{k=1}^\infty a_k < \infty$ is considered, in which the permutation of signs is subject to the Markov dependence with the matrix of transition probabilities
$$ \begin{pmatrix} p(+1,+1)&p(-1,+1) p(+1,-1)&p(-1,-1) \end{pmatrix}= \begin{pmatrix} 1-\alpha&\alpha \alpha&1-\alpha \end{pmatrix}, \qquad 1<\alpha<1. $$
For the characteristic function $f(z)$ of the sum $S$, the formula
$$ f(z)=\prod^{\infty}_{k=0}\cos(a_kz)+i(1-2\alpha)\sum_{j=0}^{\infty}\psi_j(z)\prod^{\infty}_{k=j+2}\cos(a_kz)\sin(a_{j+1}z), $$
is obtained, where $\psi_j(z)=\mathsf{E}(t_je^{izS_j})$ и $S_j=\sum^j_{k=1}\pm a_k$, $z \in {\mathbf C}^1$.
Keywords: random series, Markov dependence, characteristic function.
Received: 12.04.1999
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 4, Pages 687–690
DOI: https://doi.org/10.1137/S0040585X97978634
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Ryabinin, “On characteristic functions of probability distributions of sums with random permutations of signs”, Teor. Veroyatnost. i Primenen., 45:4 (2000), 773–776; Theory Probab. Appl., 45:4 (2001), 687–690
Citation in format AMSBIB
\Bibitem{Rya00}
\by A.~A.~Ryabinin
\paper On characteristic functions of probability distributions of sums with random permutations of signs
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 4
\pages 773--776
\mathnet{http://mi.mathnet.ru/tvp508}
\crossref{https://doi.org/10.4213/tvp508}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1968729}
\zmath{https://zbmath.org/?q=an:0990.60013}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 4
\pages 687--690
\crossref{https://doi.org/10.1137/S0040585X97978634}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000171923100015}
Linking options:
  • https://www.mathnet.ru/eng/tvp508
  • https://doi.org/10.4213/tvp508
  • https://www.mathnet.ru/eng/tvp/v45/i4/p773
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024