Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2016, Volume 61, Issue 3, Pages 595–601
DOI: https://doi.org/10.4213/tvp5077
(Mi tvp5077)
 

Short Communications

Joint statistics of random walk on $Z^1$ and accumulation of visits

J. K. Percusa, O. E. Percusb

a Courant Institute of Mathematical Sciences
b New York University
References:
Abstract: We obtain the joint distribution $P_N(X,K\,|\,Z)$ of the location $X$ of a one-dimensional symmetric next neighbor random walk on the integer lattice, and the number of times the walk has visited a specified site $Z$. This distribution has a simple form in terms of the one variable distribution $p_{N'} (X')$, where $N'=N-K$ and $X'$ is a function of $X$, $K$, and $Z$. The marginal distributions of $X$ and $K$ are obtained, as well as their diffusion scaling limits.
Keywords: symmetric random walks, walk on integer lattice, frequency of visits, walker visit number correlation.
Received: 10.07.2015
English version:
Theory of Probability and its Applications, 2017, Volume 61, Issue 3, Pages 499–505
DOI: https://doi.org/10.1137/S0040585X97T988307
Bibliographic databases:
Document Type: Article
Language: English
Citation: J. K. Percus, O. E. Percus, “Joint statistics of random walk on $Z^1$ and accumulation of visits”, Teor. Veroyatnost. i Primenen., 61:3 (2016), 595–601; Theory Probab. Appl., 61:3 (2017), 499–505
Citation in format AMSBIB
\Bibitem{PerPer16}
\by J.~K.~Percus, O.~E.~Percus
\paper Joint statistics of random walk on $Z^1$ and accumulation of visits
\jour Teor. Veroyatnost. i Primenen.
\yr 2016
\vol 61
\issue 3
\pages 595--601
\mathnet{http://mi.mathnet.ru/tvp5077}
\crossref{https://doi.org/10.4213/tvp5077}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3626466}
\zmath{https://zbmath.org/?q=an:1383.60039}
\elib{https://elibrary.ru/item.asp?id=27485091}
\transl
\jour Theory Probab. Appl.
\yr 2017
\vol 61
\issue 3
\pages 499--505
\crossref{https://doi.org/10.1137/S0040585X97T988307}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412117600009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030321552}
Linking options:
  • https://www.mathnet.ru/eng/tvp5077
  • https://doi.org/10.4213/tvp5077
  • https://www.mathnet.ru/eng/tvp/v61/i3/p595
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :41
    References:28
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024