Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2016, Volume 61, Issue 3, Pages 580–588
DOI: https://doi.org/10.4213/tvp5075
(Mi tvp5075)
 

Short Communications

Exponentials and $R$-recurrent random walks on groups

M. G. Shur

Moscow State Institute of Electronics and Mathematics — Higher School of Economics
References:
Abstract: On a locally compact group $E$ with a countable base we consider a right random walk $X$ which for some $r>0$ has a unique (up to a positive multiplier) $r$-invariant measure. If this measure obeys some weak restrictions, then the random walk $X$ corresponds to the single continuous exponential on $E$. From this we obtain that we can implement some $R$-recurrent (by Tweedie) random walk on the group $E$ only in the case when this group is recurrent and, moreover, when there exists a Harris recurrent random walk on it.
Keywords: $r$-invariant measure, $R$-recurrent walk on a group, random walk, Harris recurrent walk, exponential.
Received: 27.04.2015
English version:
Theory of Probability and its Applications, 2017, Volume 61, Issue 3, Pages 505–513
DOI: https://doi.org/10.1137/S0040585X97T988319
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. G. Shur, “Exponentials and $R$-recurrent random walks on groups”, Teor. Veroyatnost. i Primenen., 61:3 (2016), 580–588; Theory Probab. Appl., 61:3 (2017), 505–513
Citation in format AMSBIB
\Bibitem{Shu16}
\by M.~G.~Shur
\paper Exponentials and $R$-recurrent random walks on groups
\jour Teor. Veroyatnost. i Primenen.
\yr 2016
\vol 61
\issue 3
\pages 580--588
\mathnet{http://mi.mathnet.ru/tvp5075}
\crossref{https://doi.org/10.4213/tvp5075}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3626464}
\zmath{https://zbmath.org/?q=an:1383.60009}
\elib{https://elibrary.ru/item.asp?id=27485089}
\transl
\jour Theory Probab. Appl.
\yr 2017
\vol 61
\issue 3
\pages 505--513
\crossref{https://doi.org/10.1137/S0040585X97T988319}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412117600010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030310921}
Linking options:
  • https://www.mathnet.ru/eng/tvp5075
  • https://doi.org/10.4213/tvp5075
  • https://www.mathnet.ru/eng/tvp/v61/i3/p580
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:279
    Full-text PDF :139
    References:44
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024