Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2016, Volume 61, Issue 2, Pages 327–347
DOI: https://doi.org/10.4213/tvp5058
(Mi tvp5058)
 

Distribution density of commutant of random rotations of three-dimensional Euclidean space

F. M. Malyshev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: The basic measure $\mu $ is defined on the group $ SO (3) $ of rotations of three-dimensional Euclidean space. It responds to the product of uniform distributions on the sets of axes of rotations and angles of rotations. We consider three distribution densities with respect to $\mu$: $\rho_0 $ is a density of left- and right-invariant measure (Haar measure); $ \rho_1 $ is a density of distribution of rotations $ \Lambda^k$, $k \ge 2 $, where $ \Lambda $ is a random rotation with density $ \rho_0 $; and $ \rho_2 $ is a distribution density of the $ \Lambda_1^{- 1} \Lambda_2^{- 1} \Lambda_1 \Lambda_2 $ commutant, where $ \Lambda_1 $, $ \Lambda_2 $ are random independent rotations with the distribution density $ \rho_0 $. It is shown that $ \rho_2 \equiv \sqrt{\rho_0 \rho_1} \frac{\pi \sqrt {2}} {4} $ and the measure $ \mu_1 $ with density $ \rho_1 $ is proportional to the basic measure $ \mu $.
Received: 02.02.2015
English version:
Theory of Probability and its Applications, 2017, Volume 61, Issue 2, Pages 277–294
DOI: https://doi.org/10.1137/S0040585X97T988149
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: F. M. Malyshev, “Distribution density of commutant of random rotations of three-dimensional Euclidean space”, Teor. Veroyatnost. i Primenen., 61:2 (2016), 327–347; Theory Probab. Appl., 61:2 (2017), 277–294
Citation in format AMSBIB
\Bibitem{Mal16}
\by F.~M.~Malyshev
\paper Distribution density of commutant of random rotations of three-dimensional Euclidean space
\jour Teor. Veroyatnost. i Primenen.
\yr 2016
\vol 61
\issue 2
\pages 327--347
\mathnet{http://mi.mathnet.ru/tvp5058}
\crossref{https://doi.org/10.4213/tvp5058}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3626785}
\elib{https://elibrary.ru/item.asp?id=26604212}
\transl
\jour Theory Probab. Appl.
\yr 2017
\vol 61
\issue 2
\pages 277--294
\crossref{https://doi.org/10.1137/S0040585X97T988149}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404120400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021243229}
Linking options:
  • https://www.mathnet.ru/eng/tvp5058
  • https://doi.org/10.4213/tvp5058
  • https://www.mathnet.ru/eng/tvp/v61/i2/p327
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:382
    Full-text PDF :50
    References:54
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024