Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 4, Pages 740–744
DOI: https://doi.org/10.4213/tvp502
(Mi tvp502)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

Rough boundary trace for solutions of $Lu=\psi(u)$

E. B. Dynkina, S. E. Kuznetsovb

a Department of Mathematics, Cornell University, USA
b Department of Mathematics, University of Colorado, USA
Full-text PDF (328 kB) Citations (1)
Abstract: Let $L$ be a second order elliptic differential operator in $\mathbf{R}^d$ and let $E$ be a bounded domain in $\mathbf{R}^d$ with smooth boundary $\partial E$. A pair $(\Gamma,\nu)$ is associated with every positive solution of a semilinear differential equation $Lu=\psi(u)$ in $E$, where $\Gamma$ is a closed subset of $\partial E$ and $\nu$ is a Radon measure on $O=\partial E\setminus \Gamma$. We call this pair the rough trace of $u$ on $\partial E$. (In [E. B. Dynkin and S. E. Kuznetsov, Comm. Pure Appl. Math., 51 (1998), pp. 897–936], we introduced a fine trace allowing us to distinguish solutions with identical rough traces.)
The case of $\psi(u)=u^\alpha$ with $\alpha>1$ was investigated using various methods by Le Gall, Dynkin, and Kuznetsov and by Marcus and Véron. In this paper we cover a wide class of functions $\psi$ and simplify substantially the proofs contained in our earlier papers.
Keywords: boundary trace of a solution, moderate solutions, sweeping, removable and thin boundary sets, stochastic boundary value, diffusion, range of superdiffusion.
Received: 26.07.2000
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 4, Pages 662–667
DOI: https://doi.org/10.1137/S0040585X97978579
Bibliographic databases:
Document Type: Article
Language: English
Citation: E. B. Dynkin, S. E. Kuznetsov, “Rough boundary trace for solutions of $Lu=\psi(u)$”, Teor. Veroyatnost. i Primenen., 45:4 (2000), 740–744; Theory Probab. Appl., 45:4 (2001), 662–667
Citation in format AMSBIB
\Bibitem{DynKuz00}
\by E.~B.~Dynkin, S.~E.~Kuznetsov
\paper Rough boundary trace for solutions of $Lu=\psi(u)$
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 4
\pages 740--744
\mathnet{http://mi.mathnet.ru/tvp502}
\crossref{https://doi.org/10.4213/tvp502}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1968724}
\zmath{https://zbmath.org/?q=an:0994.60074}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 4
\pages 662--667
\crossref{https://doi.org/10.1137/S0040585X97978579}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000171923100010}
Linking options:
  • https://www.mathnet.ru/eng/tvp502
  • https://doi.org/10.4213/tvp502
  • https://www.mathnet.ru/eng/tvp/v45/i4/p740
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:254
    Full-text PDF :145
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024