Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1957, Volume 2, Issue 2, Pages 145–177 (Mi tvp5017)  

This article is cited in 94 scientific papers (total in 94 papers)

Limit Theorems for Stochastic Processes with Independent Increments

A. V. Skorokhod

Moscow
Abstract: The general results in [8] are used for the case of convergence of processes with independent increments.
In particular the following results are obtained:
2.6. Theorem. Let the distributions of processes with independent increments $\xi_n(t)$ converge to the distribution of a continuous probability process with independent increments $\xi_0 (t)$ for all $t$.
Then, there exists an $\bar x_n(t)$, such that the distribution $f(\xi_n(t)-\bar x_n(t))$ converges to the distribution $f(\xi_0(t))$ if the functional $f$ is continuous in the $\mathbf J_1$-topology (see [8]).
3.4. Theorem. Let $\xi_{n,1},\cdots,\xi_{n,n}$ be independent random variables with, the same distributions, and also let $\eta_{n,1},\cdots,\eta_{n,n}$ be independent random variables with the same distributions:
$$\xi_n(t)=\sum_{i\leq t(n+1)}\xi_{n,i},\quad\eta_n(t)=\sum_{i\leq t(n+1)}\eta_{n,i}.$$
Further, let distributions $\xi_n(t)$ and $\eta_n (t)$ converge to the distribution $\xi_0(t)$ for all $t$.
Then, the Levy distance between distribution functions of random variables $f(\xi_n(t))$ and $f(\eta_n (t))$ tends to zero as $n\to\infty$, for all functional $f$, such that
$$\lim_{\delta\to0}\sup_{\sup\limits_t|x(t)-y(t)|\leq\delta}|f(x(t))-f(y(t))|=0.$$
Received: 11.01.1957
English version:
Theory of Probability and its Applications, 1957, Volume 2, Issue 2, Pages 138–171
DOI: https://doi.org/10.1137/1102011
Document Type: Article
Language: Russian
Citation: A. V. Skorokhod, “Limit Theorems for Stochastic Processes with Independent Increments”, Teor. Veroyatnost. i Primenen., 2:2 (1957), 145–177; Theory Probab. Appl., 2:2 (1957), 138–171
Citation in format AMSBIB
\Bibitem{Sko57}
\by A.~V.~Skorokhod
\paper Limit Theorems for Stochastic Processes with Independent Increments
\jour Teor. Veroyatnost. i Primenen.
\yr 1957
\vol 2
\issue 2
\pages 145--177
\mathnet{http://mi.mathnet.ru/tvp5017}
\transl
\jour Theory Probab. Appl.
\yr 1957
\vol 2
\issue 2
\pages 138--171
\crossref{https://doi.org/10.1137/1102011}
Linking options:
  • https://www.mathnet.ru/eng/tvp5017
  • https://www.mathnet.ru/eng/tvp/v2/i2/p145
  • This publication is cited in the following 94 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:464
    Full-text PDF :276
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024