Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2007, Volume 52, Issue 1, Pages 69–83
DOI: https://doi.org/10.4213/tvp5
(Mi tvp5)
 

This article is cited in 10 scientific papers (total in 10 papers)

Limit theorem for the general number of cycles in a random $A$-permutation

A. L. Yakymiv

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Let $S_n$ be the symmetric group of all permutations of degree $n, A$ be some nonempty subset of the set of natural numbers $N$, and let $T_n=T_n(A)$ be the set of all permutations from $S_n$ with cycle lengths from $A$. The permutations from $T_n$ are called $A$-permutations. Let $\zeta_n$ be the general number of cycles in a random permutation uniformly distributed on $T_n$. In this paper, we find the way to prove the limit theorem for $\zeta_n$ starting with the asymptotics of $|T_n|$. The limit theorem obtained here is new in a number of cases when the asymptotics of $|T_n|$ is known but the limit theorem for $\zeta_n$ has not yet been proven by other methods. As has been noted by the author, $|T_n|/n!$ is the Karamata regularly varying function with index $\sigma-1$, where $\sigma>0$ is the density of the set $A$, in a number of papers of different authors. Proof of the limit theorem for $\zeta_n$ is the main goal of this paper, assuming none of the additional restrictions typical of previous investigations.
Keywords: asymptotic density of the set $A$, logarithmic density of the set $A$, random $A$-permutations, general number of cycles in random $A$-permutation, regularly varying functions, slowly varying functions, Tauberian theorem.
Received: 24.12.2005
Revised: 06.09.2006
English version:
Theory of Probability and its Applications, 2008, Volume 52, Issue 1, Pages 133–146
DOI: https://doi.org/10.1137/S0040585X97982827
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. L. Yakymiv, “Limit theorem for the general number of cycles in a random $A$-permutation”, Teor. Veroyatnost. i Primenen., 52:1 (2007), 69–83; Theory Probab. Appl., 52:1 (2008), 133–146
Citation in format AMSBIB
\Bibitem{Yak07}
\by A.~L.~Yakymiv
\paper Limit theorem for the general number of cycles in a~random $A$-permutation
\jour Teor. Veroyatnost. i Primenen.
\yr 2007
\vol 52
\issue 1
\pages 69--83
\mathnet{http://mi.mathnet.ru/tvp5}
\crossref{https://doi.org/10.4213/tvp5}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2354570}
\zmath{https://zbmath.org/?q=an:1145.60008}
\elib{https://elibrary.ru/item.asp?id=9466878}
\transl
\jour Theory Probab. Appl.
\yr 2008
\vol 52
\issue 1
\pages 133--146
\crossref{https://doi.org/10.1137/S0040585X97982827}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254828600009}
\elib{https://elibrary.ru/item.asp?id=13569555}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42949128091}
Linking options:
  • https://www.mathnet.ru/eng/tvp5
  • https://doi.org/10.4213/tvp5
  • https://www.mathnet.ru/eng/tvp/v52/i1/p69
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:685
    Full-text PDF :203
    References:77
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024