Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 4, Pages 670–693
DOI: https://doi.org/10.4213/tvp498
(Mi tvp498)
 

Large deviations for partial sums $U$-processes in dependent cases

P. Eichelsbacher

Fakultat für Mathematik, Universität Bielefeld, Germany
Abstract: The large deviation principle (LDP) is known to hold for partial sums $U$-processes of real-valued kernel functions of independent identically distributed random variables $X_i$. We prove an LDP when the $X_i$ are independent but not identically distributed or fulfill some Markov dependence or mixing conditions. Moreover, we give a general condition which suffices for the LDP to carry over from the partial sums empirical processes LDP to the partial sums $U$-processes LDP for kernel functions satisfying an appropriate exponential tail condition.
Keywords: large deviations, partial sums, $U$-process, Markov chains, hypermixing, strong mixing.
Received: 26.06.1998
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 4, Pages 569–588
DOI: https://doi.org/10.1137/S0040585X97978531
Bibliographic databases:
Language: English
Citation: P. Eichelsbacher, “Large deviations for partial sums $U$-processes in dependent cases”, Teor. Veroyatnost. i Primenen., 45:4 (2000), 670–693; Theory Probab. Appl., 45:4 (2001), 569–588
Citation in format AMSBIB
\Bibitem{Eic00}
\by P.~Eichelsbacher
\paper Large deviations for partial sums $U$-processes in dependent cases
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 4
\pages 670--693
\mathnet{http://mi.mathnet.ru/tvp498}
\crossref{https://doi.org/10.4213/tvp498}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1968721}
\zmath{https://zbmath.org/?q=an:0992.60033}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 4
\pages 569--588
\crossref{https://doi.org/10.1137/S0040585X97978531}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000171923100003}
Linking options:
  • https://www.mathnet.ru/eng/tvp498
  • https://doi.org/10.4213/tvp498
  • https://www.mathnet.ru/eng/tvp/v45/i4/p670
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024