|
This article is cited in 39 scientific papers (total in 39 papers)
A note on optimal stopping of regular diffusions under random discounting
M. Beibel, H. R. Lerche Institut für Mathematische Stochastik, Universität Freiburg, Germany
Abstract:
Let X be a one-dimensional regular diffusion, $A$ a positive continuous additive functional of $X$, and h a measurable real-valued function. A method is proposed to determine a stopping rule $T^*$ that maximizes $\mathbf{E}\{e^{-A_T} h(X_T) 1_{\{T < \infty\}}\}$ over all stopping times $T$ of $X$. Several examples are discussed.
Keywords:
diffusions, generalized parking problems, optimal stopping, random regret.
Received: 04.02.1999
Citation:
M. Beibel, H. R. Lerche, “A note on optimal stopping of regular diffusions under random discounting”, Teor. Veroyatnost. i Primenen., 45:4 (2000), 657–669; Theory Probab. Appl., 45:4 (2001), 547–557
Linking options:
https://www.mathnet.ru/eng/tvp497https://doi.org/10.4213/tvp497 https://www.mathnet.ru/eng/tvp/v45/i4/p657
|
|