|
Teoriya Veroyatnostei i ee Primeneniya, 1958, Volume 3, Issue 4, Pages 470–474
(Mi tvp4952)
|
|
|
|
This article is cited in 30 scientific papers (total in 30 papers)
Short Communications
On Uniform Approximation of the Binomial Distribution by Infinitely Divisible Laws
I. P. Tsaregradskii Moscow
Abstract:
Let $F_p^n(x)$ be an $(n,p)$ –- binomial distribution function and be the set of all infinitely divisible laws. We define
$$\rho\bigl(F_p^n,\mathfrak G\bigr)=\inf_{G\in\mathfrak G}\sup_x\left|F_p^n (x)-G(x)\right|.$$
Then, $$\sup_{0\leq p\leq1}\rho\left(F_p^n,\mathfrak G\right)<\frac{C_0}{\sqrt n},$$ where $C_0$ is an absolute constant.
Received: 06.07.1958
Citation:
I. P. Tsaregradskii, “On Uniform Approximation of the Binomial Distribution by Infinitely Divisible Laws”, Teor. Veroyatnost. i Primenen., 3:4 (1958), 470–474; Theory Probab. Appl., 3:4 (1958), 434–438
Linking options:
https://www.mathnet.ru/eng/tvp4952 https://www.mathnet.ru/eng/tvp/v3/i4/p470
|
Statistics & downloads: |
Abstract page: | 141 | Full-text PDF : | 71 |
|