Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1958, Volume 3, Issue 3, Pages 332–350 (Mi tvp4938)  

This article is cited in 40 scientific papers (total in 40 papers)

Random Substitution of Time in Strong Markov Processes

V. A. Volkonskii

Moscow
Abstract: The terminology and symbols are as in [7] and [1].
Let $x(t,\omega)$ be a homogeneous strong Markov process, and $\tau_t(\omega)$ be a random function not decreasing for increasing $t$. The process $y_t=x(\tau_t(\omega),\omega)$ is called a process obtained from $x_t(\omega)$ by means of a random substitution of time $\tau_t$.
The conditions sufficient for the process $y_t$ to be a Markov or a strong Markov process are formulated (Theorems 1 and 2).
In [1] it is shown that the infinitesimal operator $\mathrm A$ of $a$ Feller strong Markov process continuous on the right is a contraction of a certain operator $\mathfrak{a}$, which is called the extended operator. It is shown that if $x_t$ and $x(\tau _t)$ are Feller processes continuous on the right and $\tau _t $ is determined by equation (2), where $\varphi (x)>0$, and continuous, then their extended operator is $\mathfrak{a}$, where $\mathfrak{a}$ satisfies the equation $t=\varphi (x)\mathfrak{a}$ (Theorem 3).
In Theorem 4 and in its corollary it is shown that a one-dimensional homogeneous regular continuous strong Markov process may be obtained from a Wiener process by means of a random substitution of time and a monotone transformation of the segment.
Received: 12.03.1958
English version:
Theory of Probability and its Applications, 1958, Volume 3, Issue 3, Pages 310–326
DOI: https://doi.org/10.1137/1103025
Document Type: Article
Language: Russian
Citation: V. A. Volkonskii, “Random Substitution of Time in Strong Markov Processes”, Teor. Veroyatnost. i Primenen., 3:3 (1958), 332–350; Theory Probab. Appl., 3:3 (1958), 310–326
Citation in format AMSBIB
\Bibitem{Vol58}
\by V.~A.~Volkonskii
\paper Random Substitution of Time in Strong Markov Processes
\jour Teor. Veroyatnost. i Primenen.
\yr 1958
\vol 3
\issue 3
\pages 332--350
\mathnet{http://mi.mathnet.ru/tvp4938}
\transl
\jour Theory Probab. Appl.
\yr 1958
\vol 3
\issue 3
\pages 310--326
\crossref{https://doi.org/10.1137/1103025}
Linking options:
  • https://www.mathnet.ru/eng/tvp4938
  • https://www.mathnet.ru/eng/tvp/v3/i3/p332
  • This publication is cited in the following 40 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :107
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024