|
Teoriya Veroyatnostei i ee Primeneniya, 1958, Volume 3, Issue 1, Pages 41–60
(Mi tvp4913)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Discontinuous Markov Processes
E. B. Dynkin Moscow
Abstract:
A Markov process $x(t,w),t\geq0,\omega\in\Omega$, on a measurable space $(\mathscr E,\mathfrak B)$ is called a discontinuous process, if for every $\omega\in\Omega$ and $t\geq0$ there exists an $\varepsilon>0$ such that
$x(t,\omega)=x(t+h,\omega)$ for all $h\in(0,\varepsilon]$. In this paper infinitesimal operators of all discontinuous processes are calculated. The results of these calculations imply the step-function processes described.
Received: 02.10.1957
Citation:
E. B. Dynkin, “Discontinuous Markov Processes”, Teor. Veroyatnost. i Primenen., 3:1 (1958), 41–60; Theory Probab. Appl., 3:1 (1958), 38–57
Linking options:
https://www.mathnet.ru/eng/tvp4913 https://www.mathnet.ru/eng/tvp/v3/i1/p41
|
|