Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 3, Pages 603–607
DOI: https://doi.org/10.4213/tvp490
(Mi tvp490)
 

This article is cited in 21 scientific papers (total in 21 papers)

Short Communications

More on the Skitovich–Darmous theorem for finite Abelian groups

G. M. Feldman

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
Abstract: The following theorem is proved. Let $X$ be a finite Abelian group and $\xi_1, \xi_2$ be independent random variables with values in $X$ and with distributions $\mu_1, \mu_2$. Then the independence of the linear statistics $L_1=\alpha_1(\xi_1) + \alpha_2(\xi_2)$ and $L_2=\beta_1(\xi_1) + \beta_2(\xi_2)$, where $\alpha_j, \beta_j$ are automorphisms of the group $X$, implies that $\mu_1,\mu_2$ are idempotent distributions.
Keywords: characterization of probability distributions, independence of linear statistics, finite Abelian group.
Received: 01.12.1998
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 3, Pages 507–511
DOI: https://doi.org/10.1137/S0040585X97978452
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. M. Feldman, “More on the Skitovich–Darmous theorem for finite Abelian groups”, Teor. Veroyatnost. i Primenen., 45:3 (2000), 603–607; Theory Probab. Appl., 45:3 (2001), 507–511
Citation in format AMSBIB
\Bibitem{Fel00}
\by G.~M.~Feldman
\paper More on the Skitovich--Darmous theorem for finite Abelian groups
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 3
\pages 603--607
\mathnet{http://mi.mathnet.ru/tvp490}
\crossref{https://doi.org/10.4213/tvp490}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1967795}
\zmath{https://zbmath.org/?q=an:1005.60017}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 3
\pages 507--511
\crossref{https://doi.org/10.1137/S0040585X97978452}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170561800010}
Linking options:
  • https://www.mathnet.ru/eng/tvp490
  • https://doi.org/10.4213/tvp490
  • https://www.mathnet.ru/eng/tvp/v45/i3/p603
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024