|
This article is cited in 21 scientific papers (total in 21 papers)
Short Communications
More on the Skitovich–Darmous theorem for finite Abelian groups
G. M. Feldman B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
Abstract:
The following theorem is proved. Let $X$ be a finite Abelian group and $\xi_1, \xi_2$ be independent random variables with values in $X$ and with distributions $\mu_1, \mu_2$. Then the independence of the linear statistics $L_1=\alpha_1(\xi_1) + \alpha_2(\xi_2)$ and $L_2=\beta_1(\xi_1) + \beta_2(\xi_2)$, where $\alpha_j, \beta_j$ are automorphisms of the group $X$, implies that $\mu_1,\mu_2$ are idempotent distributions.
Keywords:
characterization of probability distributions, independence of linear statistics, finite Abelian group.
Received: 01.12.1998
Citation:
G. M. Feldman, “More on the Skitovich–Darmous theorem for finite Abelian groups”, Teor. Veroyatnost. i Primenen., 45:3 (2000), 603–607; Theory Probab. Appl., 45:3 (2001), 507–511
Linking options:
https://www.mathnet.ru/eng/tvp490https://doi.org/10.4213/tvp490 https://www.mathnet.ru/eng/tvp/v45/i3/p603
|
|