Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 3, Pages 555–567
DOI: https://doi.org/10.4213/tvp485
(Mi tvp485)
 

This article is cited in 8 scientific papers (total in 8 papers)

Exact maximal inequalities for exchangeable systems of random variables

S. Chobanyana, H. Salehib

a Muskhelishvili Institute of Computational Mathematics
b Michigan State University, MI, USA
Full-text PDF (619 kB) Citations (8)
Abstract: Given an exchangeable finite system of Banachspace valued random variables $(\xi_1,\ldots,\xi_n)$ with $\sum_1^n\xi_i=0$, we prove that $\mathbf{E}\Phi(\max_{k\le n}\|\xi_1+\cdots+\xi_k\|)$ is equivalent to $\mathbf{E}\Phi(\|\sum_1^n\xi_ir_i\|)$ for any increasing and convex $\Phi\colon\mathbf{R}^+\to\mathbf{R}^+$, $\Phi(0)=0$, where $(r_1,\ldots,r_n)$ is a system of Rademacher random variables independent of $(\xi_1,\ldots,\xi_n)$. We also establish the equivalence of the tails of the related distributions. The results seem to be new also for scalar random variables. As corollaries we find best estimations for the average of $\max_{k\le n}\|a_{\pi(1)}+\cdots+a_{\pi(k)}\|$ with respect to permutations $\pi$ of nonrandom vectors $a_1,\ldots,a_n$ from a normed space.
Keywords: exchangeable random variables, Banach space, maximal inequality, permutations.
Received: 31.03.1998
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 3, Pages 424–435
DOI: https://doi.org/10.1137/S0040585X97978373
Bibliographic databases:
Language: English
Citation: S. Chobanyan, H. Salehi, “Exact maximal inequalities for exchangeable systems of random variables”, Teor. Veroyatnost. i Primenen., 45:3 (2000), 555–567; Theory Probab. Appl., 45:3 (2001), 424–435
Citation in format AMSBIB
\Bibitem{ChoSal00}
\by S.~Chobanyan, H.~Salehi
\paper Exact maximal inequalities for exchangeable systems of random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 3
\pages 555--567
\mathnet{http://mi.mathnet.ru/tvp485}
\crossref{https://doi.org/10.4213/tvp485}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1967790}
\zmath{https://zbmath.org/?q=an:0993.60032}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 3
\pages 424--435
\crossref{https://doi.org/10.1137/S0040585X97978373}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170561800004}
Linking options:
  • https://www.mathnet.ru/eng/tvp485
  • https://doi.org/10.4213/tvp485
  • https://www.mathnet.ru/eng/tvp/v45/i3/p555
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:357
    Full-text PDF :201
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024