Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1960, Volume 5, Issue 3, Pages 265–292 (Mi tvp4835)  

This article is cited in 16 scientific papers (total in 16 papers)

Effective Solutions of Linear Approximation Problems for Multivariate Stationary Processes with a Rational Spectrum

A. M. Yaglom

Moscow
Abstract: We consider a class of multivariate stationary random processes $\xi(t)=\{\xi_1(t),\dots,\xi_k(t)\}$ having the nonsingular spectral density matrix $||f_{jk}(\lambda)||$, where all $f_{jk}(\lambda)$ are rational functions of $\lambda$. The following linear approximation problems for the processes are studied: 1) the simplest extrapolation problem of determining a linear least-square estimate of $\xi_k(t+\tau),\tau>0$, by known values of $\xi_j(t'),j=1, \dots,n,t'\leq t$; 2) the finite interval extrapolation problem of a linear least-square estimation of $\xi_k(t+\tau)$ by $\xi_j(t'),j=1,\dots,n,t-T\leq t'\leq t$; 3) the interpolation problem of a least-square estimation of $\xi_k(t+\tau),0< \tau<T$ by $\xi_j(t'),j=1,\dots,n,t'\leq t$ or $t'\geq t+T$; 4) the filtration problem of a least-square estimation of the value of some random variable $\Xi$ (such that the functions $f_{\Xi k}(\lambda),k=1,\dots,n$, from equations (3.1)–(3.2) have the form (3.4), where all $q_{rk}(\lambda)$ are rational) by the values of $\xi _j(t'),j=1,\dots,n,t'\leq t$ or $t-T\leq t'\leq t$.
In all cases the method used in previous papers [11] and [12] enables the explicit extrapolation, interpolation or filtration formulae to be derived by merely solving the algebraical equation $D(\lambda)=\det||f_{jk}(\lambda)||=0$ and afterwards a simple system of linear algebraical equations. The same method can also be applied to the case when we wish to find a least-square estimate of $\xi_k(t+\tau)$ or $\Xi$ by the values of $\xi_j(t'),j=1,\dots,n$, on any set of closed intervals on the time axis. Some other generalizations of extrapolation, interpolation and filtration problems may be solved by the same method; they are given in the last section of the paper.
Received: 15.07.1959
English version:
Theory of Probability and its Applications, 1960, Volume 5, Issue 3, Pages 239–264
DOI: https://doi.org/10.1137/1105025
Document Type: Article
Language: Russian
Citation: A. M. Yaglom, “Effective Solutions of Linear Approximation Problems for Multivariate Stationary Processes with a Rational Spectrum”, Teor. Veroyatnost. i Primenen., 5:3 (1960), 265–292; Theory Probab. Appl., 5:3 (1960), 239–264
Citation in format AMSBIB
\Bibitem{Yag60}
\by A.~M.~Yaglom
\paper Effective Solutions of Linear Approximation Problems for Multivariate Stationary Processes with a Rational Spectrum
\jour Teor. Veroyatnost. i Primenen.
\yr 1960
\vol 5
\issue 3
\pages 265--292
\mathnet{http://mi.mathnet.ru/tvp4835}
\transl
\jour Theory Probab. Appl.
\yr 1960
\vol 5
\issue 3
\pages 239--264
\crossref{https://doi.org/10.1137/1105025}
Linking options:
  • https://www.mathnet.ru/eng/tvp4835
  • https://www.mathnet.ru/eng/tvp/v5/i3/p265
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024