|
Teoriya Veroyatnostei i ee Primeneniya, 1960, Volume 5, Issue 1, Pages 114–124
(Mi tvp4817)
|
|
|
|
This article is cited in 9 scientific papers (total in 9 papers)
Short Communications
On Approximation of a Multinomial Distribution by Infinitely Divisible Laws
L. D. Meshalkin Moscow
Abstract:
Let $F_p^n(x)$ be an $(n,p)$ binomial distribution function, $\mathfrak{G}$ a set of all infinitely divisible laws and $$\rho(F_p^n,\mathfrak G)=\inf\limits_{G\in\mathfrak G}\sup\limits_x\left|F_p^n(x)-G(x)\right|.$$ Then,
a) $\sup\limits_{0\leq p\leq1}\rho_1(F_p^n,\mathfrak G)<C_0 n^{-2/3}$,
b) $\rho_1(F^n_{n^{-2/3}},\mathfrak G_1^M(n^{1/3}))>C(M)n^{-2/3}(\lg n)^{-1/4}$, where $C_0$ is an absolute constant $C(M)>0$ depends on $M$ only, and $$\mathfrak G_1^M(a)=\biggl\{G:G\in\mathfrak G;\int_{-\infty}^\infty e^{itx}\,dG(x)=\exp\biggl[i\gamma t+\sum_{|k|<M}(e^{itk}-1)q_k\biggr]\\\int_{-\infty}^\infty x\,dG(x)=a,\quad q_k\geq0,k=0,\pm1\dots.\biggr\}.$$
The result a) is generalized for the case of a multinomial distribution.
Received: 30.10.1959
Citation:
L. D. Meshalkin, “On Approximation of a Multinomial Distribution by Infinitely Divisible Laws”, Teor. Veroyatnost. i Primenen., 5:1 (1960), 114–124; Theory Probab. Appl., 5:1 (1960), 106–114
Linking options:
https://www.mathnet.ru/eng/tvp4817 https://www.mathnet.ru/eng/tvp/v5/i1/p114
|
Statistics & downloads: |
Abstract page: | 131 | Full-text PDF : | 68 |
|