|
Teoriya Veroyatnostei i ee Primeneniya, 1961, Volume 6, Issue 4, Pages 377–391
(Mi tvp4795)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations. II
Yu. V. Linnik Leningrad
Abstract:
“Narrow” Zones of Local and Integral Normal Attraction. Using the notation in Part I of this article, we consider the integral normal attraction zones for the variables $X_i$ and local normal attraction zones for $X_j\in(d)$. The monotone function $h(x)\leq x^{1/2}$ is considered under the supplementary conditions explained in Part I; the “narrow zone theorems” are more conveniently expressed in terms of the condition
\begin{equation}
\label{eq*}\tag{*}
E\exp h(|X_j |)<\infty.
\end{equation}
The equation
$$
h(\sqrt n\Lambda(n))=(\Lambda(n))^2
$$
determines the monotone function $\Lambda (n)$. The condition \eqref{eq*} is necessary for the zones $[0,\Lambda (n)\rho (n)],[ - \Lambda (n)\rho (n),0]$ to be z.n.a., and for $X_j \in (d)$ to be z.u.l.n.a. It is sufficientt for the zones $[0,\Lambda (n)/\rho(n)], [-\Lambda(n)/\rho (n),0]$ to be z.n.a. and for $X_j\in(d)$ – to be z.u.l.n.a.
Received: 28.06.1960
Citation:
Yu. V. Linnik, “Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations. II”, Teor. Veroyatnost. i Primenen., 6:4 (1961), 377–391; Theory Probab. Appl., 6:4 (1961), 345–360
Linking options:
https://www.mathnet.ru/eng/tvp4795 https://www.mathnet.ru/eng/tvp/v6/i4/p377
|
Statistics & downloads: |
Abstract page: | 142 | Full-text PDF : | 74 |
|