Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1961, Volume 6, Issue 4, Pages 377–391 (Mi tvp4795)  

This article is cited in 6 scientific papers (total in 6 papers)

Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations. II

Yu. V. Linnik

Leningrad
Abstract: “Narrow” Zones of Local and Integral Normal Attraction. Using the notation in Part I of this article, we consider the integral normal attraction zones for the variables $X_i$ and local normal attraction zones for $X_j\in(d)$. The monotone function $h(x)\leq x^{1/2}$ is considered under the supplementary conditions explained in Part I; the “narrow zone theorems” are more conveniently expressed in terms of the condition
\begin{equation} \label{eq*}\tag{*} E\exp h(|X_j |)<\infty. \end{equation}
The equation
$$ h(\sqrt n\Lambda(n))=(\Lambda(n))^2 $$
determines the monotone function $\Lambda (n)$. The condition \eqref{eq*} is necessary for the zones $[0,\Lambda (n)\rho (n)],[ - \Lambda (n)\rho (n),0]$ to be z.n.a., and for $X_j \in (d)$ to be z.u.l.n.a. It is sufficientt for the zones $[0,\Lambda (n)/\rho(n)], [-\Lambda(n)/\rho (n),0]$ to be z.n.a. and for $X_j\in(d)$ – to be z.u.l.n.a.
Received: 28.06.1960
English version:
Theory of Probability and its Applications, 1961, Volume 6, Issue 4, Pages 345–360
DOI: https://doi.org/10.1137/1106048
Document Type: Article
Language: Russian
Citation: Yu. V. Linnik, “Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations. II”, Teor. Veroyatnost. i Primenen., 6:4 (1961), 377–391; Theory Probab. Appl., 6:4 (1961), 345–360
Citation in format AMSBIB
\Bibitem{Lin61}
\by Yu.~V.~Linnik
\paper Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations.~II
\jour Teor. Veroyatnost. i Primenen.
\yr 1961
\vol 6
\issue 4
\pages 377--391
\mathnet{http://mi.mathnet.ru/tvp4795}
\transl
\jour Theory Probab. Appl.
\yr 1961
\vol 6
\issue 4
\pages 345--360
\crossref{https://doi.org/10.1137/1106048}
Linking options:
  • https://www.mathnet.ru/eng/tvp4795
  • https://www.mathnet.ru/eng/tvp/v6/i4/p377
    Cycle of papers
    This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024