Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 3, Pages 417–436
DOI: https://doi.org/10.4213/tvp478
(Mi tvp478)
 

This article is cited in 70 scientific papers (total in 71 papers)

A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts

V. I. Bogacheva, M. Röcknerb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Universität Bielefeld, Fakultät für Mathematik, Germany
Abstract: Let $A=(A^{ij})$ be a mapping with values in the space of the nonnegative symmetric operators on $\mathbf{R}^n$ and let $B=(B^i)$ be a Borel vector field on $\mathbf{R}^n$ such that $A$ is locally uniformly nondegenerate, $A^{ij}\in H^{p,1}_{\mathrm{loc}}(\mathbf{R}^n)$, $B^i\in L^p_{\mathrm{loc}}(\mathbf{R}^n)$, where $p>n$. We show that the existence of a Lyapunov function for the operator $L_{A,B}f=\sum A^{ij}\partial_{x_i}\partial_{x_j} f +\sum B^i\partial_{x_i}f$ is sufficient for the existence of a probability measure $\mu$ with a strictly positive continuous density in the class $H^{p,1}_{\mathrm{loc}}(\mathbf{R}^n)$ such that $\mu$ satisfies $L_{A,B}^{*}\mu =0$ in the weak sense and is an invariant measure for the diffusion with the generator $L_{A,B}$ on domain $C_0^\infty (\mathbf{R}^n)$. For arbitrary continuous nondegenerate $A$ and locally bounded $B$, we prove the existence of absolutely continuous solutions. An analogous generalization of Khasminskii's theorem is obtained for manifolds.
Keywords: invariant measure, diffusion process.
Received: 05.08.1998
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 3, Pages 363–378
DOI: https://doi.org/10.1137/S0040585X97978348
Bibliographic databases:
Language: Russian
Citation: V. I. Bogachev, M. Röckner, “A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts”, Teor. Veroyatnost. i Primenen., 45:3 (2000), 417–436; Theory Probab. Appl., 45:3 (2001), 363–378
Citation in format AMSBIB
\Bibitem{BogRoc00}
\by V.~I.~Bogachev, M.~R\"ockner
\paper A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 3
\pages 417--436
\mathnet{http://mi.mathnet.ru/tvp478}
\crossref{https://doi.org/10.4213/tvp478}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1967783}
\zmath{https://zbmath.org/?q=an:1004.60061}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 3
\pages 363--378
\crossref{https://doi.org/10.1137/S0040585X97978348}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170561800001}
Linking options:
  • https://www.mathnet.ru/eng/tvp478
  • https://doi.org/10.4213/tvp478
  • https://www.mathnet.ru/eng/tvp/v45/i3/p417
    Erratum
    This publication is cited in the following 71 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:877
    Full-text PDF :273
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024