Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1961, Volume 6, Issue 2, Pages 145–163 (Mi tvp4763)  

This article is cited in 19 scientific papers (total in 19 papers)

Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations. I

Yu. V. Linnik

Moscow
Abstract: The independent identically distributed variables $x_1,x_2,\dots,x_n$ are supposed to have $E({x_j})=0$; $D({x_j})=\sigma^2<\infty$. Denote
$$Z_n=\frac{x_1+\cdots+x_n}{\sigma\sqrt n}.$$
Let $\Psi(n)\to\infty$ be some monotone function. The sequence of segments $[0,\Psi (n)]$ is called the zone of normal attraction (z. n. a.) if
$$\frac{{\mathbf P(Z_n>x)}}{\frac1{\sqrt{2\pi}}\int_x^\infty{e^{-n^2/2}\,dn}}\to1$$
for $x\in[0,\Psi(n)]$; the zones $[-\Psi(n),0]$ are defined similarly as z. n. a. The zones $[0,n^\alpha];[-n^\alpha,0](\alpha>0$ constant) are called simplest. The zones such that $\Psi(n)=o(n^{1/6})$ are called “narrow”.
For the random variables of the class $(d)$ (possessing a bounded continuous density) the zones $[0,\Psi (n)],[-\Psi (n),0]$ are called the zones of the uniform local normal attraction (z. u. l. n. a.) if
$$\frac{p_{Z_n}(x)}{\frac1{\sqrt{2\pi}}e^{-x^2/2}}\to1$$
uniformly in x belonging to the said zones. Let $\alpha<1/2$. The condition
$$\mathbf E\exp\left|{x_j}\right|^{4\alpha/(2\alpha+1)}<\infty$$
is proved to be necessary for the zones $[0,n^\alpha],[-n^\alpha,0]$, to be z. n. a., and for $x_j\in(d)$ to be the z. u. l. n. a. Let $\rho(n)$ be a given monotonic function increasing as slowly as we please, then the condition $(*)$ is sufficient for the zones $[0,n^\alpha/\rho(n)];[-n^\alpha/\rho(n),0]$ to be the z. n. a., and for $x_j\in(d)$ to be the z. u. l. n. a. if $\alpha<1/6$. If $\alpha>1/6$, $x_j\in(d)$, a condition is given in terms of the series $1/6,1/4,3/10,\dots,(1/2)(s+1)/(s+3)\to1/2$ and of moments of $x_j$. This condition is necessary for the zones $[0,n^\alpha \rho (n)]$, $[-n^\alpha\rho(n),0]$ to be z. u. l. n. a. and sufficient for the zones $[0,n^\alpha/\rho (n)]$; $[-n^\alpha\rho (n),0]$ to be z. u. l. n. a.
Received: 28.06.1960
English version:
Theory of Probability and its Applications, 1961, Volume 6, Issue 2, Pages 131–148
DOI: https://doi.org/10.1137/1106019
Document Type: Article
Language: Russian
Citation: Yu. V. Linnik, “Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations. I”, Teor. Veroyatnost. i Primenen., 6:2 (1961), 145–163; Theory Probab. Appl., 6:2 (1961), 131–148
Citation in format AMSBIB
\Bibitem{Lin61}
\by Yu.~V.~Linnik
\paper Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations.~I
\jour Teor. Veroyatnost. i Primenen.
\yr 1961
\vol 6
\issue 2
\pages 145--163
\mathnet{http://mi.mathnet.ru/tvp4763}
\transl
\jour Theory Probab. Appl.
\yr 1961
\vol 6
\issue 2
\pages 131--148
\crossref{https://doi.org/10.1137/1106019}
Linking options:
  • https://www.mathnet.ru/eng/tvp4763
  • https://www.mathnet.ru/eng/tvp/v6/i2/p145
    Cycle of papers
    This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024