Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 2, Pages 403–409
DOI: https://doi.org/10.4213/tvp474
(Mi tvp474)
 

This article is cited in 5 scientific papers (total in 5 papers)

Short Communications

On the Monge–Kantorovich duality theorem

D. Ramachandrana, L. Rüschendorfb

a California State University, Department of Mathematics and Statistics
b Institut füur Mathematische Stochastik, Albert-Ludwigs-Universität, Germany
Full-text PDF (529 kB) Citations (5)
Abstract: The Monge–Kantorovitch duality theorem has a variety of applications in probability theory, statistics, and mathematical economics. There has been extensive work to establish the duality theorem under general conditions. In this paper, by imposing a natural stability requirement on the Monge–Kantorovitch functional, we characterize the probability spaces (called strong duality spaces) which ensure the validity of the duality theorem. We prove that strong duality is equivalent to each one of (i) extension property, (ii) projection property, (iii) the charge extension property, and (iv) perfectness. The resulting characterization enables us to derive many useful properties that such spaces inherit from being perfect.
Keywords: duality theorem, marginals, perfect measure, charge extension, Marczewski function.
Received: 01.04.1999
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 2, Pages 350–356
DOI: https://doi.org/10.1137/S0040585X97978300
Bibliographic databases:
Document Type: Article
Language: English
Citation: D. Ramachandran, L. Rüschendorf, “On the Monge–Kantorovich duality theorem”, Teor. Veroyatnost. i Primenen., 45:2 (2000), 403–409; Theory Probab. Appl., 45:2 (2001), 350–356
Citation in format AMSBIB
\Bibitem{RamRus00}
\by D.~Ramachandran, L.~R\"uschendorf
\paper On the Monge--Kantorovich duality theorem
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 2
\pages 403--409
\mathnet{http://mi.mathnet.ru/tvp474}
\crossref{https://doi.org/10.4213/tvp474}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1967767}
\zmath{https://zbmath.org/?q=an:0978.60004}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 2
\pages 350--356
\crossref{https://doi.org/10.1137/S0040585X97978300}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169004700015}
Linking options:
  • https://www.mathnet.ru/eng/tvp474
  • https://doi.org/10.4213/tvp474
  • https://www.mathnet.ru/eng/tvp/v45/i2/p403
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024