Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 2, Pages 395–403
DOI: https://doi.org/10.4213/tvp473
(Mi tvp473)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

Some results of stable convergence for exchangeable random variables in Hilbert spaces

M. E. Mancinoa, L. Pratellib

a Dipartimento di Matematica DEFAS, Univ. Firenze, Italia
b Accademia Navale di Livorno, Gruppo Insegnamento Matematiche, Italia
Full-text PDF (572 kB) Citations (1)
Abstract: Some results of stable convergence for triangular arrays of finitely exchangeable Hilbert-valued random variables are proved. These results, obtained without any integrability hypothesis, complete the classical central limit results. A Berry–Esseen type estimate for their rate of convergence is also given.
Keywords: exchangeable random variables, stable convergence, central limit theorem in Hilbert spaces, rate of convergence, Berry–Esseen type estimate.
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 2, Pages 329–337
DOI: https://doi.org/10.1137/S0040585X97978270
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. E. Mancino, L. Pratelli, “Some results of stable convergence for exchangeable random variables in Hilbert spaces”, Teor. Veroyatnost. i Primenen., 45:2 (2000), 395–403; Theory Probab. Appl., 45:2 (2001), 329–337
Citation in format AMSBIB
\Bibitem{ManPra00}
\by M.~E.~Mancino, L.~Pratelli
\paper Some results of stable convergence for exchangeable random variables in Hilbert spaces
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 2
\pages 395--403
\mathnet{http://mi.mathnet.ru/tvp473}
\crossref{https://doi.org/10.4213/tvp473}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1967766}
\zmath{https://zbmath.org/?q=an:0981.60022}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 2
\pages 329--337
\crossref{https://doi.org/10.1137/S0040585X97978270}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169004700012}
Linking options:
  • https://www.mathnet.ru/eng/tvp473
  • https://doi.org/10.4213/tvp473
  • https://www.mathnet.ru/eng/tvp/v45/i2/p395
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:337
    Full-text PDF :217
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024