Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 2, Pages 386–395
DOI: https://doi.org/10.4213/tvp472
(Mi tvp472)
 

This article is cited in 10 scientific papers (total in 10 papers)

Short Communications

Estimates for the Syracuse problem via a probabilistic model

K. A. Borovkova, D. Pfeiferb

a University of Melbourne, Department of Mathematics and Statistics
b Institut für Mathematische Stochastik, Universität, Germany
Abstract: We employ a simple stochastic model for the Syracuse problem (also known as the $(3x+ 1)$ problem) to get estimates for the average behavior of the trajectories of the original deterministic dynamical system. The use of the model is supported not only by certain similarities between the governing rules in the systems, but also by a qualitative estimate of the rate of approximation. From the model, we derive explicit formulae for the asymptotic densities of some sets of interest for the original sequence. We also approximate the asymptotic distributions for the stopping times (times until absorption in the only known cycle $\{1,2\}$) of the original system and give numerical illustrations of our results.
Keywords: Syracuse problem, dynamical system, random walk.
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 2, Pages 300–310
DOI: https://doi.org/10.1137/S0040585X97978245
Bibliographic databases:
Document Type: Article
Language: English
Citation: K. A. Borovkov, D. Pfeifer, “Estimates for the Syracuse problem via a probabilistic model”, Teor. Veroyatnost. i Primenen., 45:2 (2000), 386–395; Theory Probab. Appl., 45:2 (2001), 300–310
Citation in format AMSBIB
\Bibitem{BorPfe00}
\by K.~A.~Borovkov, D.~Pfeifer
\paper Estimates for the Syracuse problem via a~probabilistic model
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 2
\pages 386--395
\mathnet{http://mi.mathnet.ru/tvp472}
\crossref{https://doi.org/10.4213/tvp472}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1967765}
\zmath{https://zbmath.org/?q=an:0984.60050}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 2
\pages 300--310
\crossref{https://doi.org/10.1137/S0040585X97978245}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169004700009}
Linking options:
  • https://www.mathnet.ru/eng/tvp472
  • https://doi.org/10.4213/tvp472
  • https://www.mathnet.ru/eng/tvp/v45/i2/p386
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024