|
Teoriya Veroyatnostei i ee Primeneniya, 1962, Volume 7, Issue 2, Pages 204–208
(Mi tvp4715)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Short Communications
On the Structure of the Infinitesimal $\sigma$-Algebra of a Gaussian Process
V. N. Tutubalin, M. I. Freidlin Moscow
Abstract:
Let $x(t)$ be a Gaussian stationary process $\mathfrak{M}_{+0}=\bigcap _{t>0}\mathfrak{M}_t$, where $\mathfrak{M}_t$ is the $\sigma $-algebra generated by $x(s),0\leq s\leq t$. It is proved that if the spectral density $f(\lambda)$ of the process satisfies the condition $f(\lambda)\geq{1}/{\lambda^p}$ for all $|\lambda|>\lambda_0$ and some $p>0$, the $\sigma $-algebra $\mathfrak{M}_{+0}$ is generated by $x(0),{dx(0)}/{dt},\dots,{dx^{(k)}{(0)}}/{dt^k}$, where $k$ is the order of the derivative the sample functions admit.
Received: 25.04.1960
Citation:
V. N. Tutubalin, M. I. Freidlin, “On the Structure of the Infinitesimal $\sigma$-Algebra of a Gaussian Process”, Teor. Veroyatnost. i Primenen., 7:2 (1962), 204–208; Theory Probab. Appl., 7:2 (1962), 196–199
Linking options:
https://www.mathnet.ru/eng/tvp4715 https://www.mathnet.ru/eng/tvp/v7/i2/p204
|
Statistics & downloads: |
Abstract page: | 188 | Full-text PDF : | 71 |
|