|
Teoriya Veroyatnostei i ee Primeneniya, 1962, Volume 7, Issue 2, Pages 170–184
(Mi tvp4711)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Some Theorems on Non-Latticed Random Walk
A. A. Borovkov Novosibirsk
Abstract:
Let $\xi _1,\xi_2,\dots$ be identically distributed independent non-latticed random variables with a finite mean and a finite variance if ${\mathbf M}\xi_k=0$. Formulas are derived for the distribution of the first jump over the level
$x,0\leq x\leq\infty$. In particular the following is proved: if $\chi _+(\chi_-)$ denotes the first positive (negative) sum, $\zeta=\inf(0,\xi _1+\xi _2+\cdots+\xi _n)$ and $p=P(\zeta=0)$, then $$\frac{1-\mathbf{M}e^{i\lambda\xi _1}}{-2^{-1}\mathbf{D}\xi_1}=\frac{1-\mathbf{M}e^{i\lambda\chi_+}}{\mathbf{M}_{\chi_+}}\cdot\frac{1-\mathbf{M}e^{i\lambda\chi_-}}{\mathbf{M}\chi_-},\qquad{\text{when}}\qquad\mathbf{M}\xi _1=0,$$ $$\frac{1-\mathbf{M}e^{i\lambda\xi _1}}{\mathbf{M}\xi_1}=\frac{1-\mathbf{M}e^{i\lambda\chi_+}}{\mathbf{M}_{\chi_+}}\cdot\frac{1+p-\mathbf{M}e^{i\lambda\chi_-}}{p},\qquad{\text{when}}\qquad\mathbf{M}\xi _1>0.$$
Received: 07.04.1960
Citation:
A. A. Borovkov, “Some Theorems on Non-Latticed Random Walk”, Teor. Veroyatnost. i Primenen., 7:2 (1962), 170–184; Theory Probab. Appl., 7:2 (1962), 164–179
Linking options:
https://www.mathnet.ru/eng/tvp4711 https://www.mathnet.ru/eng/tvp/v7/i2/p170
|
Statistics & downloads: |
Abstract page: | 175 | Full-text PDF : | 63 |
|