Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1962, Volume 7, Issue 2, Pages 170–184 (Mi tvp4711)  

This article is cited in 5 scientific papers (total in 5 papers)

Some Theorems on Non-Latticed Random Walk

A. A. Borovkov

Novosibirsk
Abstract: Let $\xi _1,\xi_2,\dots$ be identically distributed independent non-latticed random variables with a finite mean and a finite variance if ${\mathbf M}\xi_k=0$. Formulas are derived for the distribution of the first jump over the level $x,0\leq x\leq\infty$. In particular the following is proved: if $\chi _+(\chi_-)$ denotes the first positive (negative) sum, $\zeta=\inf(0,\xi _1+\xi _2+\cdots+\xi _n)$ and $p=P(\zeta=0)$, then
$$\frac{1-\mathbf{M}e^{i\lambda\xi _1}}{-2^{-1}\mathbf{D}\xi_1}=\frac{1-\mathbf{M}e^{i\lambda\chi_+}}{\mathbf{M}_{\chi_+}}\cdot\frac{1-\mathbf{M}e^{i\lambda\chi_-}}{\mathbf{M}\chi_-},\qquad{\text{when}}\qquad\mathbf{M}\xi _1=0,$$
$$\frac{1-\mathbf{M}e^{i\lambda\xi _1}}{\mathbf{M}\xi_1}=\frac{1-\mathbf{M}e^{i\lambda\chi_+}}{\mathbf{M}_{\chi_+}}\cdot\frac{1+p-\mathbf{M}e^{i\lambda\chi_-}}{p},\qquad{\text{when}}\qquad\mathbf{M}\xi _1>0.$$
Received: 07.04.1960
English version:
Theory of Probability and its Applications, 1962, Volume 7, Issue 2, Pages 164–179
DOI: https://doi.org/10.1137/1107015
Document Type: Article
Language: Russian
Citation: A. A. Borovkov, “Some Theorems on Non-Latticed Random Walk”, Teor. Veroyatnost. i Primenen., 7:2 (1962), 170–184; Theory Probab. Appl., 7:2 (1962), 164–179
Citation in format AMSBIB
\Bibitem{Bor62}
\by A.~A.~Borovkov
\paper Some Theorems on Non-Latticed Random Walk
\jour Teor. Veroyatnost. i Primenen.
\yr 1962
\vol 7
\issue 2
\pages 170--184
\mathnet{http://mi.mathnet.ru/tvp4711}
\transl
\jour Theory Probab. Appl.
\yr 1962
\vol 7
\issue 2
\pages 164--179
\crossref{https://doi.org/10.1137/1107015}
Linking options:
  • https://www.mathnet.ru/eng/tvp4711
  • https://www.mathnet.ru/eng/tvp/v7/i2/p170
    Erratum
    This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024