Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1963, Volume 8, Issue 4, Pages 391–430 (Mi tvp4689)  

This article is cited in 66 scientific papers (total in 67 papers)

On Estimation of the Spectral Function of a Stationary Gaussian Process

I. A. Ibragimov

Leningrad
Abstract: Let $x_1,x_2,\dots,x_N$ be a sample time series drawn from the real stationary Gaussian process $\{x_n\},{\mathbf E}x_n\equiv0$, with unknown spectral distribution function (s.d.f.) and spectral density function $f(\lambda)$. The problem of estimating of s.d.f. $F(\lambda)$ is discussed and the estimate $F_N^*(\lambda)=\int_0^\lambda{I_N} (\lambda )d\lambda$ of s.d.f. $F(\lambda)$ is considered, where
$$I_N(\lambda)=\frac{1}{{2\pi N}}\left| {\sum\limits_1^N{x_j e^{i\lambda j}}}\right|^2.$$
In §1–§2 the asymptotic properties of expressions like
$${\mathbf E}\int_{-\pi}^\pi{\varphi(\lambda)I_N(\lambda)\,d\lambda},\quad{\mathbf E}\int_{-\pi}^\pi{T_1(\lambda)I_N(\lambda )\,d\lambda}\int_{-\pi}^\pi{T_2(\mu )I_N(\mu)\,d\mu}$$
are investigated. The main section of this paper is §5. Let
$$\zeta_N(\lambda)=\sqrt N\left[{F_N^*(\lambda)-F\lambda}\right],$$
and let $\zeta(\lambda)$ be a Gaussian stochastic process with
$$\zeta(0)=0,\,\mathbf E\zeta(\lambda)\equiv0,\,{\mathbf E}\zeta(\lambda)\zeta(\mu)=2\pi\displaystyle\int_0^{\min(\lambda,\mu)}f^2(\lambda)\,d\lambda,\quad0\leq\lambda,\,\mu\leq\pi.$$
We denote by $P_N$ the probability measure induced in $C[0,\pi]$ by $\zeta_N(\lambda)$, and by $P$ the probability measure induced in $C[0,\pi]$ by $\zeta(\lambda)$. The following is proved in §5:
Theorem 5.1 Let
$$ 1.\int_a^b{f(\lambda)\,d\lambda}>0\qquad{\text{for every}}\quad[a,b]\subset[-\pi,\pi];\\ 2.\int_{-\pi}^\pi{(f(\lambda))^{2+\delta}\,d\lambda}<\infty\qquad{\text{for some}}\quad\delta>0, $$
then $\mathop{P_N\Rightarrow P}\limits_{N\to\infty}$, where the sign $\Rightarrow$ denotes weak convergence of the measures.
In §8 some estimates are given for probabilities of large deviations $F_N^*(\lambda)$ from $F(\lambda)$.
In §9 it is shown that all results of §§$1$$8$ are valid for continuous time.
Received: 26.02.1962
English version:
Theory of Probability and its Applications, 1963, Volume 8, Issue 4, Pages 366–401
DOI: https://doi.org/10.1137/1108044
Document Type: Article
Language: Russian
Citation: I. A. Ibragimov, “On Estimation of the Spectral Function of a Stationary Gaussian Process”, Teor. Veroyatnost. i Primenen., 8:4 (1963), 391–430; Theory Probab. Appl., 8:4 (1963), 366–401
Citation in format AMSBIB
\Bibitem{Ibr63}
\by I.~A.~Ibragimov
\paper On Estimation of the Spectral Function of a Stationary Gaussian Process
\jour Teor. Veroyatnost. i Primenen.
\yr 1963
\vol 8
\issue 4
\pages 391--430
\mathnet{http://mi.mathnet.ru/tvp4689}
\transl
\jour Theory Probab. Appl.
\yr 1963
\vol 8
\issue 4
\pages 366--401
\crossref{https://doi.org/10.1137/1108044}
Linking options:
  • https://www.mathnet.ru/eng/tvp4689
  • https://www.mathnet.ru/eng/tvp/v8/i4/p391
  • This publication is cited in the following 67 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:239
    Full-text PDF :137
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024