|
Teoriya Veroyatnostei i ee Primeneniya, 1963, Volume 8, Issue 3, Pages 324–327
(Mi tvp4680)
|
|
|
|
This article is cited in 23 scientific papers (total in 23 papers)
Short Communications
Axiomatic Definition of the Value of a Matrix Game
È. I. Vilkas Vilnius
Abstract:
Let a real function $f$, whose argument is a matrix $A$, satisfy the following axioms:
1. $f(\mathbf{\bar A})\geq(A)$ if $\mathbf{ \bar A}\geq A$;
2. $f(\mathbf{\bar A})=f(A)$ if $A$ differs from $A$ only by a row, which is dominated by others;
3. $f(-A^T)=-f(A)$, the index $T$ stands for transposition;
4. $f(x)\geq x$ for a real number $x$.
Then $f(A)$ is the game value function. Axioms $1$–$4$ are independent. Another similar set of axioms is given.
Received: 06.03.1963
Citation:
È. I. Vilkas, “Axiomatic Definition of the Value of a Matrix Game”, Teor. Veroyatnost. i Primenen., 8:3 (1963), 324–327; Theory Probab. Appl., 8:3 (1963), 304–307
Linking options:
https://www.mathnet.ru/eng/tvp4680 https://www.mathnet.ru/eng/tvp/v8/i3/p324
|
Statistics & downloads: |
Abstract page: | 200 | Full-text PDF : | 85 |
|