Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 2, Pages 312–327
DOI: https://doi.org/10.4213/tvp465
(Mi tvp465)
 

Purely game-theoretic random sequences: II. Limiting empirical distributions and strong central limit theorem

M. Minozzo

University of Perugia, Department of Statistical Sciences, Italy
Abstract: In Part I of this paper [M. Minozzo, Theory Probab. Appl., 44 (1999), pp. 511–522] a definition of typical sequences was given, without using any Kolmogorovian probability distribution $P$, by applying the principle of the excluded gambling strategy directly to a sequence of measurable functions. In this paper we forward this theory by deriving for these typical sequences some elementary limiting empirical distribution functions and some strong central limit theorem type results for the coin tossing process.
Keywords: algorithmic probability theory, almost sure limit theorems, distributions of the values, martingales, typical sequences.
Received: 17.07.1997
Revised: 11.11.1998
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 2, Pages 233–245
DOI: https://doi.org/10.1137/S0040585X97978191
Bibliographic databases:
Language: English
Citation: M. Minozzo, “Purely game-theoretic random sequences: II. Limiting empirical distributions and strong central limit theorem”, Teor. Veroyatnost. i Primenen., 45:2 (2000), 312–327; Theory Probab. Appl., 45:2 (2001), 233–245
Citation in format AMSBIB
\Bibitem{Min00}
\by M.~Minozzo
\paper Purely game-theoretic random sequences:~II. Limiting empirical distributions and strong
central limit theorem
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 2
\pages 312--327
\mathnet{http://mi.mathnet.ru/tvp465}
\crossref{https://doi.org/10.4213/tvp465}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1967759}
\zmath{https://zbmath.org/?q=an:0982.60015}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 2
\pages 233--245
\crossref{https://doi.org/10.1137/S0040585X97978191}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169004700004}
Linking options:
  • https://www.mathnet.ru/eng/tvp465
  • https://doi.org/10.4213/tvp465
  • https://www.mathnet.ru/eng/tvp/v45/i2/p312
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024