Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 2, Pages 236–250
DOI: https://doi.org/10.4213/tvp461
(Mi tvp461)
 

This article is cited in 1 scientific paper (total in 1 paper)

Multivariate rank correlations: a Gaussian field on a direct product of spheres

V. I. Piterbarg, Yu. N. Tyurin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (716 kB) Citations (1)
Abstract: An asymptotic decision rule of testing for the independence of components of a random vector is suggested. The rule is based on ranking of linear coordinates of observations and on application of Roy's “union-intersection principle”.
Keywords: multivariate sample ranks, Kendall's tau, weak convergence.
Received: 26.08.1997
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 2, Pages 246–257
DOI: https://doi.org/10.1137/S0040585X97978208
Bibliographic databases:
Language: Russian
Citation: V. I. Piterbarg, Yu. N. Tyurin, “Multivariate rank correlations: a Gaussian field on a direct product of spheres”, Teor. Veroyatnost. i Primenen., 45:2 (2000), 236–250; Theory Probab. Appl., 45:2 (2001), 246–257
Citation in format AMSBIB
\Bibitem{PitTyu00}
\by V.~I.~Piterbarg, Yu.~N.~Tyurin
\paper Multivariate rank correlations: a Gaussian field on a direct product of spheres
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 2
\pages 236--250
\mathnet{http://mi.mathnet.ru/tvp461}
\crossref{https://doi.org/10.4213/tvp461}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1967755}
\zmath{https://zbmath.org/?q=an:1061.62534}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 2
\pages 246--257
\crossref{https://doi.org/10.1137/S0040585X97978208}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169004700005}
Linking options:
  • https://www.mathnet.ru/eng/tvp461
  • https://doi.org/10.4213/tvp461
  • https://www.mathnet.ru/eng/tvp/v45/i2/p236
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:435
    Full-text PDF :113
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024