|
This article is cited in 8 scientific papers (total in 9 papers)
Estimation problems for coefficients of stochastic partial differential equations. Part III
I. A. Ibragimova, R. Z. Khas'minskiib a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Wayne State University, Detroit, USA
Abstract:
This paper is concerned with the problem of estimating a functional parameter $a_0(t,x)$ upon observation of a solution $u_\varepsilon(t,x)$ of the stochastic partial differential equation $$ du_\varepsilon(t)=\sum_{|k|\le 2p}a_kD_x^ku_\varepsilon\,dt+f\,dt+\varepsilon\,dw(t)=0. $$ Asymptotically minimax estimates for $a_0$ and asymptotically effective estimates for $\Phi(a_0)$ are found under the assumption that $a_0$ is independent of $t$.
Keywords:
inverse problems, stochastic partial differential equations, statistical estimation, nonparametric problems of estimating.
Received: 09.12.1997
Citation:
I. A. Ibragimov, R. Z. Khas'minskii, “Estimation problems for coefficients of stochastic partial differential equations. Part III”, Teor. Veroyatnost. i Primenen., 45:2 (2000), 209–235; Theory Probab. Appl., 45:2 (2001), 210–232
Linking options:
https://www.mathnet.ru/eng/tvp460https://doi.org/10.4213/tvp460 https://www.mathnet.ru/eng/tvp/v45/i2/p209
|
Statistics & downloads: |
Abstract page: | 481 | Full-text PDF : | 184 | First page: | 28 |
|