Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2006, Volume 51, Issue 3, Pages 622–626
DOI: https://doi.org/10.4213/tvp46
(Mi tvp46)
 

This article is cited in 39 scientific papers (total in 39 papers)

Short Communications

Sharpening of the upper-estimate of the absolute constant in the Berry–Esseen inequality

I. G. Shevtsova

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
References:
Abstract: The upper bound of the absolute constant in the classical Berry–Esseen inequality for sums of independent identically distributed random variables with finite third moments is lowered to $C\leqslant 0.7056$.
Keywords: Berry–Esseen inequality, central limit theorem, normal approximation, convergence rate estimate.
Received: 28.06.2006
English version:
Theory of Probability and its Applications, 2007, Volume 51, Issue 3, Pages 549–553
DOI: https://doi.org/10.1137/S0040585X97982591
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. G. Shevtsova, “Sharpening of the upper-estimate of the absolute constant in the Berry–Esseen inequality”, Teor. Veroyatnost. i Primenen., 51:3 (2006), 622–626; Theory Probab. Appl., 51:3 (2007), 549–553
Citation in format AMSBIB
\Bibitem{She06}
\by I.~G.~Shevtsova
\paper Sharpening of the upper-estimate of the absolute constant in the Berry--Esseen inequality
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 3
\pages 622--626
\mathnet{http://mi.mathnet.ru/tvp46}
\crossref{https://doi.org/10.4213/tvp46}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2325552}
\zmath{https://zbmath.org/?q=an:1125.60021}
\elib{https://elibrary.ru/item.asp?id=9275446}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 3
\pages 549--553
\crossref{https://doi.org/10.1137/S0040585X97982591}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250344800014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35349018412}
Linking options:
  • https://www.mathnet.ru/eng/tvp46
  • https://doi.org/10.4213/tvp46
  • https://www.mathnet.ru/eng/tvp/v51/i3/p622
  • This publication is cited in the following 39 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:1227
    Full-text PDF :231
    References:145
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024