Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2013, Volume 58, Issue 2, Pages 387–396
DOI: https://doi.org/10.4213/tvp4512
(Mi tvp4512)
 

This article is cited in 9 scientific papers (total in 9 papers)

Short Communications

A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$

V. A. Vatutina, V. A. Topchiib

a Steklov Mathematical Institute of the Russian Academy of Sciences
b Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (168 kB) Citations (9)
References:
Abstract: An asymptotic behavior of increments of the renewal functions generated by the distributions with tails varying at $\pm\infty$ regularly with index $\beta\in(0,0.5]$ is investigated.
Keywords: increments of renewal function; infinite Mean; stable law on the real line; nonlattice distribution; regularly varying functions.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00515-a
Received: 29.02.2012
English version:
Theory of Probability and its Applications, 2014, Volume 58, Issue 2, Pages 333–342
DOI: https://doi.org/10.1137/S0040585X97986564
Bibliographic databases:
Document Type: Article
MSC: 60
Language: Russian
Citation: V. A. Vatutin, V. A. Topchii, “A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$”, Teor. Veroyatnost. i Primenen., 58:2 (2013), 387–396; Theory Probab. Appl., 58:2 (2014), 333–342
Citation in format AMSBIB
\Bibitem{VatTop13}
\by V.~A.~Vatutin, V.~A.~Topchii
\paper A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$
\jour Teor. Veroyatnost. i Primenen.
\yr 2013
\vol 58
\issue 2
\pages 387--396
\mathnet{http://mi.mathnet.ru/tvp4512}
\crossref{https://doi.org/10.4213/tvp4512}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=954594}
\zmath{https://zbmath.org/?q=an:06335011}
\elib{https://elibrary.ru/item.asp?id=20733015}
\transl
\jour Theory Probab. Appl.
\yr 2014
\vol 58
\issue 2
\pages 333--342
\crossref{https://doi.org/10.1137/S0040585X97986564}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337502000012}
\elib{https://elibrary.ru/item.asp?id=24060564}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902841331}
Linking options:
  • https://www.mathnet.ru/eng/tvp4512
  • https://doi.org/10.4213/tvp4512
  • https://www.mathnet.ru/eng/tvp/v58/i2/p387
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:616
    Full-text PDF :225
    References:84
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024