Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2013, Volume 58, Issue 2, Pages 355–380
DOI: https://doi.org/10.4213/tvp4510
(Mi tvp4510)
 

This article is cited in 19 scientific papers (total in 19 papers)

Stochastic integration on the real line

A. Basse-O'Connora, S.-E. Graversenb, J. Pedersenb

a The University of Tennessee
b University of Aarhus, Department of Mathematical Sciences
References:
Abstract: Stochastic integration on the predictable $\sigma$-field with respect to increment semimartingales, and, more generally, $\sigma$-finite $L^0$-valued measures is studied. The latter are also known as formal semimartingales. In particular, the triplet of $\sigma$-finite measures is introduced and used to characterize the set of integrable processes. Special attention is given to Lévy processes indexed by the real line. Surprisingly, many of the basic properties break down in this situation compared to the usual $\mathbf{R}_+$ case. The results enable us to define, represent, and study different classes of stationary processes.
Keywords: stochastic integration; (increment) semimartingales; Lévy processes.
Received: 02.08.2011
Revised: 14.06.2012
English version:
Theory of Probability and its Applications, 2014, Volume 58, Issue 2, Pages 193–215
DOI: https://doi.org/10.1137/S0040585X97986540
Bibliographic databases:
Document Type: Article
MSC: 60
Language: English
Citation: A. Basse-O'Connor, S.-E. Graversen, J. Pedersen, “Stochastic integration on the real line”, Teor. Veroyatnost. i Primenen., 58:2 (2013), 355–380; Theory Probab. Appl., 58:2 (2014), 193–215
Citation in format AMSBIB
\Bibitem{BasGraPed13}
\by A.~Basse-O'Connor, S.-E.~Graversen, J.~Pedersen
\paper Stochastic integration on the real line
\jour Teor. Veroyatnost. i Primenen.
\yr 2013
\vol 58
\issue 2
\pages 355--380
\mathnet{http://mi.mathnet.ru/tvp4510}
\crossref{https://doi.org/10.4213/tvp4510}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3300554}
\zmath{https://zbmath.org/?q=an:06335001}
\elib{https://elibrary.ru/item.asp?id=20733013}
\transl
\jour Theory Probab. Appl.
\yr 2014
\vol 58
\issue 2
\pages 193--215
\crossref{https://doi.org/10.1137/S0040585X97986540}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337502000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902845401}
Linking options:
  • https://www.mathnet.ru/eng/tvp4510
  • https://doi.org/10.4213/tvp4510
  • https://www.mathnet.ru/eng/tvp/v58/i2/p355
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024