Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2013, Volume 58, Issue 2, Pages 282–297
DOI: https://doi.org/10.4213/tvp4507
(Mi tvp4507)
 

Diagonally canonical and related Gaussian random elements

V. V. Kvaratskhelia, V. I. Tarieladze

Muskhelishvili Institute of Computational Mathematics
References:
Abstract: We call a Gaussian random element $\eta$ in a Banach space $X$ with a Schauder basis $\mathbf{e}=(e_n)$ diagonally canonical (for short, $D$-canonical) with respect to $\mathbf{e}$ if the distribution of $\eta$ coincides with the distribution of a random element having the form $B\xi$, where $\xi$ is a Gaussian random element in $X$, whose $\mathbf{e}$-components are stochastically independent and $B:X\to X$ is a continuous linear mapping. In this paper we show that if $X=l_p$, $1\leqq p<\infty$ and $p\ne2$, or $X=c_0$, then there exists a Gaussian random element $\eta$ in $X$, which is not $D$-canonical with respect to the natural basis of $X$. We derive this result in the case when $X=l_p$, $2<p<\infty$, or $X=c_0$ from the following statement, an analogue which was known earlier only for Banach spaces without an unconditional Schauder basis: if $X=l_p$, $2<p<\infty$, or $X=c_0$, then there exists a Gaussian random element $\eta$ in $X$ such that the distribution of $\eta$ does not coincide with the distribution of the sum of almost surely convergent in $X$ series $\sum_{n=1}^\infty x_ng_n$, where $(x_n)$ is an unconditionally summable sequence of elements of $X$ and $(g_n)$ is a sequence of stochastically independent standard Gaussian random variables.
Keywords: diagonally canonical gaussian random element; unconditionally canonical gaussian random element; gaussian covariance operator; cotype of Banach spaces; r-nuclear operator; summing operator; Gaussian average property; $gl_2$-Banach space.
Received: 31.08.2011
Revised: 01.10.2012
English version:
Theory of Probability and its Applications, 2014, Volume 58, Issue 2, Pages 286–296
DOI: https://doi.org/10.1137/S0040585X97986515
Bibliographic databases:
Document Type: Article
MSC: 60
Language: Russian
Citation: V. V. Kvaratskhelia, V. I. Tarieladze, “Diagonally canonical and related Gaussian random elements”, Teor. Veroyatnost. i Primenen., 58:2 (2013), 282–297; Theory Probab. Appl., 58:2 (2014), 286–296
Citation in format AMSBIB
\Bibitem{KvaTar13}
\by V.~V.~Kvaratskhelia, V.~I.~Tarieladze
\paper Diagonally canonical and related Gaussian random elements
\jour Teor. Veroyatnost. i Primenen.
\yr 2013
\vol 58
\issue 2
\pages 282--297
\mathnet{http://mi.mathnet.ru/tvp4507}
\crossref{https://doi.org/10.4213/tvp4507}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2324203}
\zmath{https://zbmath.org/?q=an:06335005}
\elib{https://elibrary.ru/item.asp?id=20733010}
\transl
\jour Theory Probab. Appl.
\yr 2014
\vol 58
\issue 2
\pages 286--296
\crossref{https://doi.org/10.1137/S0040585X97986515}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337502000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902782401}
Linking options:
  • https://www.mathnet.ru/eng/tvp4507
  • https://doi.org/10.4213/tvp4507
  • https://www.mathnet.ru/eng/tvp/v58/i2/p282
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:331
    Full-text PDF :179
    References:51
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024