Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2013, Volume 58, Issue 2, Pages 255–281
DOI: https://doi.org/10.4213/tvp4506
(Mi tvp4506)
 

This article is cited in 4 scientific papers (total in 4 papers)

On a probabilistic method of solving a one-dimensional initial-boundary value problem

I. A. Ibragimova, N. V. Smorodinab, M. M. Faddeevb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
b St. Petersburg State University, Department of Mathematics and Mechanics
Full-text PDF (272 kB) Citations (4)
References:
Abstract: We obtain an analogue of probabilistic representation of a solution of an initial-boundary value problem for the equation $\partial u/\partial t+(\sigma^2/2)\partial^2u/\partial x^2+f(x)u=0$, where $\sigma$ is a complex number.
Keywords: random processes; evolution equation; limit theorems; Feynman–Kac formula; Feynman integral; Feynman measure.
Received: 01.11.2012
English version:
Theory of Probability and its Applications, 2014, Volume 58, Issue 2, Pages 242–263
DOI: https://doi.org/10.1137/S0040585X97986503
Bibliographic databases:
Document Type: Article
MSC: 60
Language: Russian
Citation: I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “On a probabilistic method of solving a one-dimensional initial-boundary value problem”, Teor. Veroyatnost. i Primenen., 58:2 (2013), 255–281; Theory Probab. Appl., 58:2 (2014), 242–263
Citation in format AMSBIB
\Bibitem{IbrSmoFad13}
\by I.~A.~Ibragimov, N.~V.~Smorodina, M.~M.~Faddeev
\paper On a probabilistic method of solving a one-dimensional initial-boundary value problem
\jour Teor. Veroyatnost. i Primenen.
\yr 2013
\vol 58
\issue 2
\pages 255--281
\mathnet{http://mi.mathnet.ru/tvp4506}
\crossref{https://doi.org/10.4213/tvp4506}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3300556}
\zmath{https://zbmath.org/?q=an:06335003}
\elib{https://elibrary.ru/item.asp?id=20733009}
\transl
\jour Theory Probab. Appl.
\yr 2014
\vol 58
\issue 2
\pages 242--263
\crossref{https://doi.org/10.1137/S0040585X97986503}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337502000004}
\elib{https://elibrary.ru/item.asp?id=24060532}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902832394}
Linking options:
  • https://www.mathnet.ru/eng/tvp4506
  • https://doi.org/10.4213/tvp4506
  • https://www.mathnet.ru/eng/tvp/v58/i2/p255
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:697
    Full-text PDF :230
    References:93
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024