|
This article is cited in 4 scientific papers (total in 4 papers)
On a probabilistic method of solving a one-dimensional initial-boundary value problem
I. A. Ibragimova, N. V. Smorodinab, M. M. Faddeevb a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
b St. Petersburg State University, Department of Mathematics and Mechanics
Abstract:
We obtain an analogue of probabilistic representation of a solution of an initial-boundary value problem for the equation $\partial u/\partial t+(\sigma^2/2)\partial^2u/\partial x^2+f(x)u=0$, where $\sigma$ is a complex number.
Keywords:
random processes; evolution equation; limit theorems; Feynman–Kac formula; Feynman integral; Feynman measure.
Received: 01.11.2012
Citation:
I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “On a probabilistic method of solving a one-dimensional initial-boundary value problem”, Teor. Veroyatnost. i Primenen., 58:2 (2013), 255–281; Theory Probab. Appl., 58:2 (2014), 242–263
Linking options:
https://www.mathnet.ru/eng/tvp4506https://doi.org/10.4213/tvp4506 https://www.mathnet.ru/eng/tvp/v58/i2/p255
|
Statistics & downloads: |
Abstract page: | 697 | Full-text PDF : | 230 | References: | 93 | First page: | 3 |
|