Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2013, Volume 58, Issue 2, Pages 235–254
DOI: https://doi.org/10.4213/tvp4505
(Mi tvp4505)
 

Law of large numbers for the number of active particles in the epidemic model

M. E. Zhukovskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In the last decade, a large number of papers was devoted to studying probabilistic properties of epidemic models on graphs. In this paper we consider a generalization of the model proposed by Machado, Mashurian, and Matzinger. The Machado–Mashurian–Matzinger model serves as an interpretation of spread of viruses in a computer network. We assume that at each moment of time more than one node of the network can be infected. In this context we propose a more advanced model permitting jumps of several particles each time, while the number of such particles is random. We prove the optimal version of the law of large numbers for the number of infected particles in the epidemic model at hand.
Keywords: epidemic model; random walks; law of large numbers; branching processes.
Received: 14.11.2011
Revised: 13.08.2012
English version:
Theory of Probability and its Applications, 2014, Volume 58, Issue 2, Pages 297–313
DOI: https://doi.org/10.1137/S0040585X97986497
Bibliographic databases:
Document Type: Article
MSC: 60
Language: Russian
Citation: M. E. Zhukovskii, “Law of large numbers for the number of active particles in the epidemic model”, Teor. Veroyatnost. i Primenen., 58:2 (2013), 235–254; Theory Probab. Appl., 58:2 (2014), 297–313
Citation in format AMSBIB
\Bibitem{Zhu13}
\by M.~E.~Zhukovskii
\paper Law of large numbers for the number of active particles in the epidemic model
\jour Teor. Veroyatnost. i Primenen.
\yr 2013
\vol 58
\issue 2
\pages 235--254
\mathnet{http://mi.mathnet.ru/tvp4505}
\crossref{https://doi.org/10.4213/tvp4505}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3249022}
\zmath{https://zbmath.org/?q=an:06335006}
\elib{https://elibrary.ru/item.asp?id=20733008}
\transl
\jour Theory Probab. Appl.
\yr 2014
\vol 58
\issue 2
\pages 297--313
\crossref{https://doi.org/10.1137/S0040585X97986497}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337502000007}
\elib{https://elibrary.ru/item.asp?id=24060530}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902830368}
Linking options:
  • https://www.mathnet.ru/eng/tvp4505
  • https://doi.org/10.4213/tvp4505
  • https://www.mathnet.ru/eng/tvp/v58/i2/p235
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:513
    Full-text PDF :215
    References:86
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024