Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2012, Volume 57, Issue 4, Pages 811–820
DOI: https://doi.org/10.4213/tvp4485
(Mi tvp4485)
 

This article is cited in 18 scientific papers (total in 18 papers)

Short Communications

Hardy’s condition in the moment problem for probability distributions

J. Stoyanova, G. D. Linb

a School of Mathematics and Statistics, University of Newcastle
b Academia Sinica
References:
Abstract: The starting point of this article consists of two papers by G. H. Hardy, published in 1917 and 1918, in which the basic condition used by the present authors first appears. Translated into probabilistic terms, Hardy’s condition can be written as follows: $\mathbf{E}[e^{c\sqrt{X}}]<\infty$, where $X$ is a nonnegative random variable and $c>0$ a constant. Assuming this condition, it follows that all moments of $X$ are finite and the distribution of $X$ is uniquely determined by the moments (i.e., it is $M$-determinate). Moreover, Hardy’s condition is weaker than Cramer’s condition, which requires the existence of a moment generating function of $X$. Hardy’s condition allows the authors to prove that the constant $1/2$ (equal to the square root) is the best possible for $X$ to be $M$-determinate. They also describe the relationship between Hardy’s condition and properties of the moments of $X$, and establish a result concerning the moment determinacy of an arbitrary multivatiate distribution.
Keywords: distribution; moments; moment problem; Hardy’s condition; Cramér’s condition; Carleman’s condition; Krein’s condition; Lin’s condition.
Received: 19.06.2012
English version:
Theory of Probability and its Applications, 2013, Volume 57, Issue 4, Pages 699–708
DOI: https://doi.org/10.1137/S0040585X9798631X
Bibliographic databases:
Document Type: Article
MSC: 44A60,60E05
Language: English
Citation: J. Stoyanov, G. D. Lin, “Hardy’s condition in the moment problem for probability distributions”, Teor. Veroyatnost. i Primenen., 57:4 (2012), 811–820; Theory Probab. Appl., 57:4 (2013), 699–708
Citation in format AMSBIB
\Bibitem{StoLin12}
\by J.~Stoyanov, G.~D.~Lin
\paper Hardy’s condition in the moment problem for probability distributions
\jour Teor. Veroyatnost. i Primenen.
\yr 2012
\vol 57
\issue 4
\pages 811--820
\mathnet{http://mi.mathnet.ru/tvp4485}
\crossref{https://doi.org/10.4213/tvp4485}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201676}
\zmath{https://zbmath.org/?q=an:06251454}
\elib{https://elibrary.ru/item.asp?id=20732993}
\transl
\jour Theory Probab. Appl.
\yr 2013
\vol 57
\issue 4
\pages 699--708
\crossref{https://doi.org/10.1137/S0040585X9798631X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326878100014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887186558}
Linking options:
  • https://www.mathnet.ru/eng/tvp4485
  • https://doi.org/10.4213/tvp4485
  • https://www.mathnet.ru/eng/tvp/v57/i4/p811
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òåîðèÿ âåðîÿòíîñòåé è åå ïðèìåíåíèÿ Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025