Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2012, Volume 57, Issue 4, Pages 800–809
DOI: https://doi.org/10.4213/tvp4483
(Mi tvp4483)
 

Short Communications

Probabilistic representation for a solution of initial boundary value problem for a system of parabolic equations

G. M. Raimova

University of World Economy and Diplomacy of the Ministry of Foreign Affairs of the Republic of Uzbekistan
References:
Abstract: Probabilistic representation of the solution of an initial-boundary value problem for the system of parabolic equations is obtained. On the basis of probabilistic representation, a random process is defined and, on trajectories of the process, unbiased and $\varepsilon$-biased estimations of the solution are constructed.
Keywords: probabilities of transition; Markov chain; statistical modeling.
Received: 18.06.2009
Revised: 20.10.2012
English version:
Theory of Probability and its Applications, 2013, Volume 57, Issue 4, Pages 688–697
DOI: https://doi.org/10.1137/S0040585X97986291
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. M. Raimova, “Probabilistic representation for a solution of initial boundary value problem for a system of parabolic equations”, Teor. Veroyatnost. i Primenen., 57:4 (2012), 800–809; Theory Probab. Appl., 57:4 (2013), 688–697
Citation in format AMSBIB
\Bibitem{Rai12}
\by G.~M.~Raimova
\paper Probabilistic representation for a solution of initial boundary value problem for a system of parabolic equations
\jour Teor. Veroyatnost. i Primenen.
\yr 2012
\vol 57
\issue 4
\pages 800--809
\mathnet{http://mi.mathnet.ru/tvp4483}
\crossref{https://doi.org/10.4213/tvp4483}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201675}
\zmath{https://zbmath.org/?q=an:1286.35066}
\elib{https://elibrary.ru/item.asp?id=20732991}
\transl
\jour Theory Probab. Appl.
\yr 2013
\vol 57
\issue 4
\pages 688--697
\crossref{https://doi.org/10.1137/S0040585X97986291}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326878100012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887151751}
Linking options:
  • https://www.mathnet.ru/eng/tvp4483
  • https://doi.org/10.4213/tvp4483
  • https://www.mathnet.ru/eng/tvp/v57/i4/p800
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024