Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1973, Volume 18, Issue 4, Pages 818–824 (Mi tvp4386)  

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

Probabilities of large deviations for randomly disturbed systems and stochastic stability

M. I. Freidlin

M. V. Lomonosov Moscow State University
Abstract: Let $x_t^\varepsilon$ be a solution of the differential equation $x^\varepsilon=b(x^\varepsilon, \varepsilon\zeta), x_0=x\in R^\gamma$. Here $\zeta_t$ is a Gaussian stochastic process, $\varepsilon$ is a small parameter. Process $x_t^\varepsilon$ may be thought of as a result of small stochastic perturbations of the system $\dot{x}=b(x,0)$. Let $O$ be a stable equilibrium point of the system, $O\in D$ (a domain in $R^\gamma$) and $\tau_D^\varepsilon=\inf\{t: x_t^\varepsilon\notin D\}$.
In the paper, the main term of $\ln\mathbf{P}\{\tau_D^\varepsilon<T\}$ as $\varepsilon\rightarrow 0$ is calculated. This term characterizes stability of point $O$ under perturbations $\varepsilon\zeta_t$ over time interval $[0, T]$.
Received: 16.02.1973
English version:
Theory of Probability and its Applications, 1974, Volume 18, Issue 4, Pages 779–784
DOI: https://doi.org/10.1137/1118100
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. I. Freidlin, “Probabilities of large deviations for randomly disturbed systems and stochastic stability”, Teor. Veroyatnost. i Primenen., 18:4 (1973), 818–824; Theory Probab. Appl., 18:4 (1974), 779–784
Citation in format AMSBIB
\Bibitem{Fre73}
\by M.~I.~Freidlin
\paper Probabilities of large deviations for randomly disturbed systems and stochastic stability
\jour Teor. Veroyatnost. i Primenen.
\yr 1973
\vol 18
\issue 4
\pages 818--824
\mathnet{http://mi.mathnet.ru/tvp4386}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=329030}
\zmath{https://zbmath.org/?q=an:0316.93045}
\transl
\jour Theory Probab. Appl.
\yr 1974
\vol 18
\issue 4
\pages 779--784
\crossref{https://doi.org/10.1137/1118100}
Linking options:
  • https://www.mathnet.ru/eng/tvp4386
  • https://www.mathnet.ru/eng/tvp/v18/i4/p818
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024