|
Teoriya Veroyatnostei i ee Primeneniya, 1973, Volume 18, Issue 4, Pages 818–824
(Mi tvp4386)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Short Communications
Probabilities of large deviations for randomly disturbed systems and stochastic stability
M. I. Freidlin M. V. Lomonosov Moscow State University
Abstract:
Let $x_t^\varepsilon$ be a solution of the differential equation $x^\varepsilon=b(x^\varepsilon, \varepsilon\zeta), x_0=x\in R^\gamma$. Here $\zeta_t$ is a Gaussian stochastic process, $\varepsilon$ is a small parameter. Process $x_t^\varepsilon$ may be thought of as a result of small stochastic perturbations of the system $\dot{x}=b(x,0)$. Let $O$ be a stable equilibrium point of the system, $O\in D$ (a domain in $R^\gamma$) and $\tau_D^\varepsilon=\inf\{t: x_t^\varepsilon\notin D\}$.
In the paper, the main term of $\ln\mathbf{P}\{\tau_D^\varepsilon<T\}$ as $\varepsilon\rightarrow 0$ is calculated. This term characterizes stability of point $O$ under perturbations $\varepsilon\zeta_t$ over time interval $[0, T]$.
Received: 16.02.1973
Citation:
M. I. Freidlin, “Probabilities of large deviations for randomly disturbed systems and stochastic stability”, Teor. Veroyatnost. i Primenen., 18:4 (1973), 818–824; Theory Probab. Appl., 18:4 (1974), 779–784
Linking options:
https://www.mathnet.ru/eng/tvp4386 https://www.mathnet.ru/eng/tvp/v18/i4/p818
|
Statistics & downloads: |
Abstract page: | 177 | Full-text PDF : | 73 |
|