|
Teoriya Veroyatnostei i ee Primeneniya, 1973, Volume 18, Issue 4, Pages 812–815
(Mi tvp4370)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Short Communications
Remarks on convergence of random processes in non-separable metric spaces and on the non-existence of a Borel measure for processes in $C(0,\infty)$
A. A. Borovkov, A. I. Sakhanenko
Abstract:
Let a random element $\xi$ and random elements $\xi_n$ take values in a metric space $X$. Let $f$ be a measure and continuous functional on $X$. We discuss pecularities connected with convergence of the distributions of $f(\xi_n)$ to the distribution of $f(\xi)$ when the space $X$ is a non-separable one.
Received: 02.02.1973
Citation:
A. A. Borovkov, A. I. Sakhanenko, “Remarks on convergence of random processes in non-separable metric spaces and on the non-existence of a Borel measure for processes in $C(0,\infty)$”, Teor. Veroyatnost. i Primenen., 18:4 (1973), 812–815; Theory Probab. Appl., 18:4 (1974), 774–777
Linking options:
https://www.mathnet.ru/eng/tvp4370 https://www.mathnet.ru/eng/tvp/v18/i4/p812
|
Statistics & downloads: |
Abstract page: | 292 | Full-text PDF : | 105 |
|