|
Teoriya Veroyatnostei i ee Primeneniya, 1973, Volume 18, Issue 4, Pages 753–766
(Mi tvp4364)
|
|
|
|
This article is cited in 39 scientific papers (total in 39 papers)
On the rate of approach of the distributions of sums of independent random variables to accompanying distributions
I. A. Ibragimov, E. L. Presman
Abstract:
Let $\mathcal{F}$ be the set of all distribution functions on $R,\mathcal{F}^*$ the subset of $\mathcal{F}$ corresponding to symmetric random variables, $F^n$ $n$-times convolution of $F$ with itself, $E_a$ the distribution function corresponding to the unit mass at $a$, $|F-G|=\sup_x |F(x)-G(x)|$ for $F,G\in\mathcal{F}$.
It is proved that
$$
\frac{c_0}{n^{1/3}}<\sup_{F\in\mathcal{F}}\inf_a |(E_a F)^n-\exp\{n(E_a F-E_0)\}|\leq\frac{8}{n^{1/3}},
$$
$$
\frac{c_1}{\sqrt{n}}<\sup_{F\in\mathcal{F}^*}|F^n-\exp\{n(F-E_0)\}|<c_2\sqrt{\frac{\log n}{n}}.
$$
Here the first right-hand inequality is Kolmogorov's uniform limit theorem in Le Cam's version.
We study also the closeness of distribution functions $\prod_i F_i E_{a_i}$ and $\exp\sum_i (F_iE_{a_i}-E_0)$ in the Kolmogorov–Smirnov and Lévy metrices.
Received: 05.10.1972
Citation:
I. A. Ibragimov, E. L. Presman, “On the rate of approach of the distributions of sums of independent random variables to accompanying distributions”, Teor. Veroyatnost. i Primenen., 18:4 (1973), 753–766; Theory Probab. Appl., 18:4 (1974), 713–727
Linking options:
https://www.mathnet.ru/eng/tvp4364 https://www.mathnet.ru/eng/tvp/v18/i4/p753
|
Statistics & downloads: |
Abstract page: | 285 | Full-text PDF : | 102 |
|