Abstract:
In the paper, an estimation problem is considered for the set of expectations of a normal population from group measurements. Unbiased consistent estimates are found, their properties being studied.
Citation:
A. V. Bernstein, A. A. Sidorov, “Estimates of the set of expectations for a normal population”, Teor. Veroyatnost. i Primenen., 17:4 (1972), 768–773; Theory Probab. Appl., 17:4 (1973), 723–726
\Bibitem{BerSid72}
\by A.~V.~Bernstein, A.~A.~Sidorov
\paper Estimates of the set of expectations for a normal population
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 4
\pages 768--773
\mathnet{http://mi.mathnet.ru/tvp4354}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=312628}
\zmath{https://zbmath.org/?q=an:0276.62034}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 17
\issue 4
\pages 723--726
\crossref{https://doi.org/10.1137/1117090}
Linking options:
https://www.mathnet.ru/eng/tvp4354
https://www.mathnet.ru/eng/tvp/v17/i4/p768
This publication is cited in the following 4 articles:
Laura Dumitrescu, Estate V. Khmaladze, “Asymptotic hypotheses testing for the colour blind problem”, Electron. J. Statist., 13:2 (2019)
Robert Martin, Handbook of Hydroxyacetophenones: Preparation and Physical Properties, 2005, 3
M. C. Aversa, P. Bonaccorsi, P. Giannetto, “Chemical behaviour of N‐(2‐hydroxybenzyl)anthranilic acids in the presence of acyclic anhydrides”, Journal of Heterocyclic Chem, 26:5 (1989), 1383
E. G. Parsadanišvili, E. V. Hmaladze, “On the testing of statistical hypothesis for the unidentifiable objects”, Theory Probab. Appl., 27:1 (1982), 175–182