Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2011, Volume 56, Issue 1, Pages 100–122
DOI: https://doi.org/10.4213/tvp4325
(Mi tvp4325)
 

This article is cited in 20 scientific papers (total in 20 papers)

Approximating the inverse of banded matrices by banded matrices with applications to probability and statistics

P. Bickela, M. Lindnerb

a Department of Statistics, University of California, Berkeley
b Technische Universität Chemnitz, Fakultät für Mathematik
References:
Abstract: In the first part of this paper we give an elementary proof of the fact that if an infinite matrix $A$, which is invertible as a bounded operator on $\ell^2$, can be uniformly approximated by banded matrices then so can the inverse of $A$. We give explicit formulas for the banded approximations of $A^{-1}$ as well as bounds on their accuracy and speed of convergence in terms of their band-width. We finally use these results to prove that the so-called Wiener algebra is inverse closed. In the second part we apply these results to covariance matrices $\Sigma$ of Gaussian processes and study mixing and beta mixing of processes in terms of properties of $\Sigma$. Finally, we note some applications of our results to statistics.
Keywords: infinite band-dominated matrices, Gaussian stochastic processes, mixing conditions, high dimensional statistical inference.
Received: 28.02.2010
English version:
Theory of Probability and its Applications, 2012, Volume 56, Issue 1, Pages 1–20
DOI: https://doi.org/10.1137/S0040585X97985224
Bibliographic databases:
Document Type: Article
Language: English
Citation: P. Bickel, M. Lindner, “Approximating the inverse of banded matrices by banded matrices with applications to probability and statistics”, Teor. Veroyatnost. i Primenen., 56:1 (2011), 100–122; Theory Probab. Appl., 56:1 (2012), 1–20
Citation in format AMSBIB
\Bibitem{BicLin11}
\by P.~Bickel, M.~Lindner
\paper Approximating the inverse of banded matrices by banded matrices with applications to probability and statistics
\jour Teor. Veroyatnost. i Primenen.
\yr 2011
\vol 56
\issue 1
\pages 100--122
\mathnet{http://mi.mathnet.ru/tvp4325}
\crossref{https://doi.org/10.4213/tvp4325}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2848418}
\zmath{https://zbmath.org/?q=an:06031470}
\elib{https://elibrary.ru/item.asp?id=20732886}
\transl
\jour Theory Probab. Appl.
\yr 2012
\vol 56
\issue 1
\pages 1--20
\crossref{https://doi.org/10.1137/S0040585X97985224}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300635400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84861360873}
Linking options:
  • https://www.mathnet.ru/eng/tvp4325
  • https://doi.org/10.4213/tvp4325
  • https://www.mathnet.ru/eng/tvp/v56/i1/p100
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024