Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2011, Volume 56, Issue 1, Pages 3–29
DOI: https://doi.org/10.4213/tvp4321
(Mi tvp4321)
 

This article is cited in 20 scientific papers (total in 20 papers)

Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories

A. A. Borovkov, A. A. Mogul'skii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We obtain analogues of the well-known Chebyshev's exponential inequality $\mathbf P(\xi \ge x)\le e^{-\Lambda^{(\xi)}(x)}$, $x>\mathbf E\,\xi$, for the distribution of a random variable $\xi$, where $\Lambda^{(\xi)}(x):=\sup_\lambda\{\lambda x- \log \mathbf E\,e^{\lambda \xi}\}$ is the large deviation rate function for $\xi$. Generalizations of this relation are established for multivariate random vectors $\xi$, for sums of the vectors, and for trajectories of random processes associated with such sums.
Keywords: Cramér condition, large deviation rate function, random walk, deviation functional, action functional, convex set, large deviations, large deviation principle, extended large deviation principle, inequalities for large deviations.
Received: 20.10.2010
English version:
Theory of Probability and its Applications, 2012, Volume 56, Issue 1, Pages 21–43
DOI: https://doi.org/10.1137/S0040585X97985182
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Borovkov, A. A. Mogul'skii, “Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories”, Teor. Veroyatnost. i Primenen., 56:1 (2011), 3–29; Theory Probab. Appl., 56:1 (2012), 21–43
Citation in format AMSBIB
\Bibitem{BorMog11}
\by A.~A.~Borovkov, A.~A.~Mogul'skii
\paper Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories
\jour Teor. Veroyatnost. i Primenen.
\yr 2011
\vol 56
\issue 1
\pages 3--29
\mathnet{http://mi.mathnet.ru/tvp4321}
\crossref{https://doi.org/10.4213/tvp4321}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2848414}
\zmath{https://zbmath.org/?q=an:1238.60022}
\elib{https://elibrary.ru/item.asp?id=20732882}
\transl
\jour Theory Probab. Appl.
\yr 2012
\vol 56
\issue 1
\pages 21--43
\crossref{https://doi.org/10.1137/S0040585X97985182}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300635400002}
\elib{https://elibrary.ru/item.asp?id=17986157}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84861397070}
Linking options:
  • https://www.mathnet.ru/eng/tvp4321
  • https://doi.org/10.4213/tvp4321
  • https://www.mathnet.ru/eng/tvp/v56/i1/p3
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024