|
Teoriya Veroyatnostei i ee Primeneniya, 1973, Volume 18, Issue 2, Pages 402–405
(Mi tvp4306)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Short Communications
Some Estimates for the Maximum Cumulative Sum of Independent Random Variables
T. V. Arak, V. B. Nevzorov Leningrad State University
Abstract:
Let $S_n=\sum_{k=1}^n X_k$, $\overline{S}_n=\max_{1\ge k\le n} S_k$; $B_n^2=\sum_{k=1}^n \mathbf{D}X_k$,
$$
G(x)=\begin{cases}
\sqrt{\frac{2}{\pi}}\int_0^x e^{-t^2/2}dt &(x\ge 0)\\
0 &(x<0)
\end{cases}, \quad
L_{n,p}=\frac{\sum_{k=1}^n \mathbf{E}|X_k|^p}{B_n^p} \quad (p>2).
$$
A sequence of independent symmetric random variables $\{X_n\}$ is constructed for which the estimste
$$
\sup_x|\mathbf{P}\{\overline{S}_n<xB_n\}-G(x)|=o(L_{n,p}^{1/p})
$$
ails to hold.
Received: 15.06.1971
Citation:
T. V. Arak, V. B. Nevzorov, “Some Estimates for the Maximum Cumulative Sum of Independent Random Variables”, Teor. Veroyatnost. i Primenen., 18:2 (1973), 402–405; Theory Probab. Appl., 18:2 (1973), 384–387
Linking options:
https://www.mathnet.ru/eng/tvp4306 https://www.mathnet.ru/eng/tvp/v18/i2/p402
|
|