|
Teoriya Veroyatnostei i ee Primeneniya, 1973, Volume 18, Issue 2, Pages 367–371
(Mi tvp4296)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Short Communications
Some Asymptotic Expansions for an Incomplete Probability Integral
P. Kouznetzoff, A. S. Yudina Moscow
Abstract:
For the D. Owen function
$$
T(h,a)=\frac{1}{2\pi}\int_0^a e^{-\frac{h^2}{2}(1+x^2)}\frac{dx}{1+x^2}
$$
asymptotic expansions are derived in the cases 1) $h\to\infty$, $a\to 1$, 2) $h\to\infty$, $a\to 0$. Numerical computations by the formulas obtained are given. A correspondence between $T(h,a)$ and an incomplete probability integral is established.
Received: 26.10.1971
Citation:
P. Kouznetzoff, A. S. Yudina, “Some Asymptotic Expansions for an Incomplete Probability Integral”, Teor. Veroyatnost. i Primenen., 18:2 (1973), 367–371; Theory Probab. Appl., 18:2 (1973), 355–359
Linking options:
https://www.mathnet.ru/eng/tvp4296 https://www.mathnet.ru/eng/tvp/v18/i2/p367
|
Statistics & downloads: |
Abstract page: | 206 | Full-text PDF : | 100 |
|