|
Teoriya Veroyatnostei i ee Primeneniya, 1964, Volume 9, Issue 4, Pages 710–718
(Mi tvp422)
|
|
|
|
This article is cited in 315 scientific papers (total in 315 papers)
Short Communications
Theorem on Sums of Independent Random Positive Variables and its Applications to Branching Processes
V. P. Čistyakov Moscow
Abstract:
Let $\xi_1,\dots,\xi_n,\dots$ be independent random positive variables and let ${\mathbf P}\{\xi_k<t\}=G(t)$, $k=1,\dots,n,\dots$ Let us denote
$$
{\mathbf P}\{\xi_1+\dots+\xi_n<t\}=G_n(t).
$$
Theorem.
$$
\lim_{t\to\infty}\frac{1-G_n(t)}{1-G(t)}=n,\qquad n=1,2,3,\dots,
$$
and only if
$$
\lim_{t\to\infty}\frac{1-G_2(t)}{1-G(t)}=2.
$$
This theorem is useful in some investigations of age-dependent branching processes.
Received: 07.01.1964
Citation:
V. P. Čistyakov, “Theorem on Sums of Independent Random Positive Variables and its Applications to Branching Processes”, Teor. Veroyatnost. i Primenen., 9:4 (1964), 710–718; Theory Probab. Appl., 9:4 (1964), 640–648
Linking options:
https://www.mathnet.ru/eng/tvp422 https://www.mathnet.ru/eng/tvp/v9/i4/p710
|
|