|
Teoriya Veroyatnostei i ee Primeneniya, 1972, Volume 17, Issue 1, Pages 147–150
(Mi tvp4196)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Short Communications
Some Properties of the Supremum of Sums of Stationary Related Random Variables
A. A. Borovkov Novosibirsk
Abstract:
Let $\{\xi_j,\ -\infty<j<\infty\}$ be a strong-sense stationary sequence
$$
X_k=\sum_{j=1}^k \xi_j,\quad X_0=0,\quad \eta=\sup_{k\ge 0}X_k,\quad \theta=\inf_{k\ge 0}X_k.
$$
We prove two theorems; the first explains the connection between the nature of $\{\xi_j\}$ and the distributions of $\eta$ and $\theta$; the second gives a useful inequality for $\mathbf{P}(\eta>0)$ in terms of the distribution of $\xi_j$.
Received: 02.03.1971
Citation:
A. A. Borovkov, “Some Properties of the Supremum of Sums of Stationary Related Random Variables”, Teor. Veroyatnost. i Primenen., 17:1 (1972), 147–150; Theory Probab. Appl., 17:1 (1972), 149–151
Linking options:
https://www.mathnet.ru/eng/tvp4196 https://www.mathnet.ru/eng/tvp/v17/i1/p147
|
Statistics & downloads: |
Abstract page: | 433 | Full-text PDF : | 276 |
|