|
Teoriya Veroyatnostei i ee Primeneniya, 1972, Volume 17, Issue 1, Pages 143–147
(Mi tvp4195)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Short Communications
The Behavior of a Jump for Processes with Independent Increments
B. A. Rogozin Novosibirsk
Abstract:
Let $\xi(t), t \geq 0$ be a process with independent increments, $\xi(0)=0$, $\tau_y=\inf\{t:\xi(t)\ge y\}$, $\Gamma_y=\xi(\tau_y)-y$.
We prove that:
1) $\mathbf{P}\{\Gamma_y>0\}=0$ for all $y>0$ if and only if
$$
\ln\mathbf{M}e^{i\lambda\xi(t)}=t\biggl\{ia\lambda-\frac{\sigma^2\lambda^2}{2}+\int_{-\infty}^0 \biggl(e^{i\lambda x}-1-\frac{i\lambda x}{1+x^2}\biggr)ds(x)\biggr\};
$$
2) $\mathbf{P}\{\Gamma_y>0\}>0,\ y>0,\ y\ne kh,\ k=1,2,\dots,h>0$, and $\mathbf{P}\{\Gamma_{kh}>0\}=0$, $k=1,2,\dots$ if and only if
$$
\ln\mathbf{M}e^{i\lambda\xi(t)}=t\biggl\{p_1(e^{i\lambda h-1})+\sum_{k=-\infty}^{-1}p_k(e^{i\lambda kh}-1)\biggr\},
$$
$$
p_k\ge 0,\quad k=1,-1,-2,\dots,\quad \sum_{k=-\infty}^{-1}p_k<\infty,\quad p_1>0;
$$
3) in all other cases $\mathbf{P}\{\Gamma_y>0\}>0$ for all $y>0$.
Received: 26.11.1970
Citation:
B. A. Rogozin, “The Behavior of a Jump for Processes with Independent Increments”, Teor. Veroyatnost. i Primenen., 17:1 (1972), 143–147; Theory Probab. Appl., 17:1 (1972), 146–149
Linking options:
https://www.mathnet.ru/eng/tvp4195 https://www.mathnet.ru/eng/tvp/v17/i1/p143
|
|