|
Teoriya Veroyatnostei i ee Primeneniya, 1972, Volume 17, Issue 1, Pages 129–142
(Mi tvp4194)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Random Mappings and Decompositions of Finite Sets
B. A. Sevast'yanov Moscow
Abstract:
Let $X=\{1,2,\dots,n\}$ be a finite set,
\begin{equation}
X=S_1+\cdots+S_r
\end{equation}
be a partition of $X$.
\begin{equation}
\Phi=\begin{pmatrix}
1 & 2 & \dots & n\\
\varphi_1 & \varphi_2 & \ldots & \varphi_n\\
\end{pmatrix}
\end{equation}
be a permutation of elements of $X$, $N(A)$ be the number of elements of any finite set $A$. We denote by $R(s_1,\dots,s_r)$ the set of all partitions (1) with $N(S_j)=s_j$, $j=1,\dots,r$, and by $T(z_1,\dots,z_m)$ the set of all permutations (2) with cycles of lengths $z_1\le z_2\le\dots\le z_m$.
Received: 26.08.1971
Citation:
B. A. Sevast'yanov, “Random Mappings and Decompositions of Finite Sets”, Teor. Veroyatnost. i Primenen., 17:1 (1972), 129–142; Theory Probab. Appl., 17:1 (1972), 132–145
Linking options:
https://www.mathnet.ru/eng/tvp4194 https://www.mathnet.ru/eng/tvp/v17/i1/p129
|
|