Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1972, Volume 17, Issue 1, Pages 71–83 (Mi tvp4190)  

This article is cited in 21 scientific papers (total in 21 papers)

A Limit Theorem for Generalized Random Branching Processes Depending on the Size of the Population

V. A. Labkovskii

Moscow
Abstract: A generalized branching processes is considered for which the probabilities of division of particles depend on their number at the time of division. A limit theorem is proved describing the asymptotic behaviour of the first exit time of the population size out of given bounds as both the initial number of particles and the bounds increase.
Received: 12.06.1969
English version:
Theory of Probability and its Applications, 1972, Volume 17, Issue 1, Pages 72–85
DOI: https://doi.org/10.1137/1117006
Bibliographic databases:
Language: Russian
Citation: V. A. Labkovskii, “A Limit Theorem for Generalized Random Branching Processes Depending on the Size of the Population”, Teor. Veroyatnost. i Primenen., 17:1 (1972), 71–83; Theory Probab. Appl., 17:1 (1972), 72–85
Citation in format AMSBIB
\Bibitem{Lab72}
\by V.~A.~Labkovskii
\paper A Limit Theorem for Generalized Random Branching Processes Depending on the Size of the Population
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 1
\pages 71--83
\mathnet{http://mi.mathnet.ru/tvp4190}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=298785}
\zmath{https://zbmath.org/?q=an:0279.60077}
\transl
\jour Theory Probab. Appl.
\yr 1972
\vol 17
\issue 1
\pages 72--85
\crossref{https://doi.org/10.1137/1117006}
Linking options:
  • https://www.mathnet.ru/eng/tvp4190
  • https://www.mathnet.ru/eng/tvp/v17/i1/p71
  • This publication is cited in the following 21 articles:
    1. Controlled Branching Processes, 2018, 197  crossref
    2. Florian Simatos, Wiley Encyclopedia of Operations Research and Management Science, 2011, 1  crossref
    3. Yuqiang Li, “On a Continuous-State Population-Size-Dependent Branching Process and Its Extinction”, Journal of Applied Probability, 43:1 (2006), 195  crossref
    4. Yuqiang Li, “On a Continuous-State Population-Size-Dependent Branching Process and Its Extinction”, J. Appl. Probab., 43:01 (2006), 195  crossref
    5. N. Lalam, C. Jacob, “Estimation of the offspring mean in a supercritical or near-critical size-dependent branching process”, Advances in Applied Probability, 36:2 (2004), 582  crossref
    6. N. Lalam, C. Jacob, “Estimation of the offspring mean in a supercritical or near-critical size-dependent branching process”, Adv. Appl. Probab., 36:02 (2004), 582  crossref
    7. P. R. Parthasarathy, B. Krishna Kumar, “Density‐dependent birth and death processes with immigration”, International Journal of Mathematical Education in Science and Technology, 24:1 (1993), 55  crossref
    8. P.R. Parthasarathy, B.Krishna Kumar, “Density-dependent birth and death process with state-dependent immigration”, Mathematical and Computer Modelling, 15:1 (1991), 11  crossref
    9. Pablo Olivares-Reimont, Alain Rouault, “Unscaled spatial branging process with interaction: macrospic equation and local equilibrium”, Stochastic Analysis and Applications, 8:4 (1990), 445  crossref
    10. F. C. Klebaner, “A limit theorem for population-size-dependent branching processes”, Journal of Applied Probability, 22:1 (1985), 48  crossref
    11. F. C. Klebaner, “A limit theorem for population-size-dependent branching processes”, J. Appl. Probab., 22:01 (1985), 48  crossref
    12. F. C. Klebaner, “On population-size-dependent branching processes”, Advances in Applied Probability, 16:1 (1984), 30  crossref
    13. F. C. Klebaner, “Geometric rate of growth in population-size-dependent branching processes”, J. Appl. Probab., 21:01 (1984), 40  crossref
    14. F. C. Klebaner, “Geometric rate of growth in population-size-dependent branching processes”, Journal of Applied Probability, 21:1 (1984), 40  crossref
    15. F. C. Klebaner, “On population-size-dependent branching processes”, Adv. Appl. Probab., 16:01 (1984), 30  crossref
    16. F. C. Klebaner, “Population-size-dependent branching process with linear rate of growth”, Journal of Applied Probability, 20:2 (1983), 242  crossref
    17. F. C. Klebaner, “Population-size-dependent branching process with linear rate of growth”, J. Appl. Probab., 20:02 (1983), 242  crossref
    18. W. Rittgen, Lecture Notes in Biomathematics, 38, Biological Growth and Spread, 1980, 98  crossref
    19. W. Rittgen, P. Tautu, Lecture Notes in Biomathematics, 11, Mathematical Models in Medicine, 1976, 109  crossref
    20. Tetsuo Fujimagari, “Controlled Galton-Watson process and its asymptotic behavior”, Kodai Math. J., 27:1-2 (1976)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:186
    Full-text PDF :80
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025